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Abstract

A fundamental question in statistical learning theory is in determining whether a machine learn-

ing algorithm produces a model that generalises to the underlying distribution, as opposed to one that

overfits to chance patterns that occur in the training data. We review some classical results in the litera-

ture that address this question including the Vapnik-Chervonenkis dimension and compression schemes,

and summarise a recent line of work that addresses this question from an information-theoretic point of

view. We apply this information-theoretic perspective in analysing a simple algorithm that learns linear

threshold functions f : {−1, 1}n → {−1, 1} by estimating their degree 0 and degree 1 Fourier coeffi-

cients from samples uniformly distributed over {−1, 1}n and labelled by a linear threshold function f .

In particular we show that this algorithm achieves an expected generalisation error of O
(√

n logm
m

)
.

We then show that a similar analysis can be applied to the algorithm of Linial et al. (1993) and that their

algorithm has an expected generalisation bound of O
(√

|F| logm
m

)
where F are subsets for which the

Fourier weights of f are ε concentrated on. Finally, we consider a more general setting of learning linear

threshold functions of the form f : Rn → {−1, 1} from samples drawn from the n-dimensional Gauss-

ian density and labelled according to f . We again consider a simple algorithm that learns f by estimating

its degree 0 and degree 1 Hermite coefficients, and show from the perspective of information theory that

this algorithm has expected generalisation error O
(√

n
m

)
. We also show how to reconstruct f to within

O(ε) accuracy, given Hermite estimates that are within L2 norm ε of the true Hermite coefficients.
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CHAPTER 1

Introduction

Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and statisti-

cal models that are able to learn and make predictions from data without explicitly being programmed to

do so. In recent years, there has been impressive practical success in machine learning, particularly with

certain deep learning models. However, how do we know if the training process outputs a model that is

reflective of the underlying population that the training data was drawn from, as opposed to overfitting

the chance patterns that may arise in the data? This is a fundamental question in the field of statistical

machine learning.

A vast array of methods have been proposed in the literature to address this question. Most notably,

the theory of Vapnik and Chervonenkis (1971) shows that if the output model is not “too complex” as

formalised by the Vapnik-Chervonenkis (VC) dimension, then it cannot overfit too much in the sense

that if a model perfectly fits the training data (i.e., it has zero empirical risk), then that model also has

close to zero population risk, meaning that it will perform well even on data it has not seen before. A

much more recent line of work (Xu and Raginsky, 2017; Bu et al., 2020; Steinke and Zakynthinou, 2020)

has used the framework of information theory to bound the expected generalisation error, which is the

expected difference between the empirical risk and population risk. In this thesis we study some appli-

cations of these information-theoretic results for learning linear threshold functions a.k.a. halfspaces, a

fundamental family of classifiers.

1.1 Main results

We consider a simple algorithm that learns linear threshold functions (LTFs) f : {−1, 1}n → {−1, 1}

over the uniform Boolean hypercube U ({−1, 1}n) by estimating the degree 0 and degree 1 Fourier

coefficients and using a result by O’Donnell and Servedio (2008) to reconstruct the LTF. In particular,

1



1.2 THESIS OUTLINE 2

we show that this algorithm achieves an expected generalisation error of O
(√

n logm
m

)
where m is the

number of samples (Theorem 14).

We show that a similar analysis can be applied to the algorithm of Linial et al. (1993) which leanrs

Boolean functions whose Fourier spectrum is “concentrated” on relatively few coefficients. In particular,

we show that their algorithm has an expected generalisation error of O
(√

|F| logm
m

)
where F are the

subsets for which the Fourier weights of f are ε concentrated on (Theorem 22).

Finally, we consider a more general setting of learning LTFs of the form f : Rn → {−1, 1} over the

n-dimensional Gaussian density. We again consider a simple algorithm that learns f by estimating its

degree 0 and degree 1 Hermite coefficients, the Gaussian analogue of Fourier coefficients, and show

that this algorithm has expected generalisation error O
(√

n
m

)
(Theorem 25). We also show how to

reconstruct an LTF to within O(ε) accuracy, given Hermite estimates that are within L2 norm ε of the

true Hermite coefficients (Theorem 29).

1.2 Thesis outline

In Chapter 2, we formalise the setting of statistical learning theory and rigorously define what we mean

by a good learning algorithm via the idea of “probably approximately correct” (PAC) learning intro-

duced by Valiant (1984). We then review some classical results that can be used to determine the sample

complexity required for PAC learning a hypothesis class, including VC dimension (Vapnik and Chervo-

nenkis, 1971) and compression schemes (Littlestone and Warmuth, 1986).

In Chapter 3, we give a brief self-contained introduction to information theory, and summarise some

recent work that uses information-theoretic analyses to bound the expected generalisation error of a

learning algorithm (Russo and Zou, 2016; Xu and Raginsky, 2017; Bu et al., 2020; Steinke and Zakyn-

thinou, 2020; Esposito et al., 2020a,b).

In Chapter 4, we review some properties of Boolean functions and their Fourier analysis, before ap-

plying the information-theoretic tools in the previous chapter to the algorithm described in Section 1.1

that learns linear threshold functions over {−1, 1}n by estimating the degree 0 and degree 1 Fourier

coefficients. We show this algorithm achieves expected generalisation error O
(√

n logm
m

)
.



1.3 NOTATION 3

In Chapter 5, we show how our analysis can also be applied to an algorithm by Linial et al. (1993). We

derive a novel result that their algorithm, when learning a Boolean function f , has expected generalisa-

tion error O
(√

|F| logm
m

)
. We review some known applications of the algorithm by Linial et al. (1993)

and discuss the expected generalisation error implied by our analysis in those applications.

In Chapter 6, we generalise the setup of learning LTFs to the continuous setting. In particular, the aim

is to learn LTFs over Rn from samples drawn from the n-dimensional standard Gaussian density. We

consider the algorithm that learns LTFs by estimating their degree 0 and degree 1 Hermite coefficients,

and show that this learning algorithm has expected generalisation error O
(
n
m

)
. We also show how to

reconstruct an LTF to within O(ε) accuracy, given Hermite estimates that are within L2 norm ε of the

true Hermite coefficients.

We conclude our thesis in Chapter 7 and provide directions for future work.

1.3 Notation

We outline the notation we will be using in this thesis.

• We write [n] := {1, 2, · · · , n} and N := {0, 1, 2, · · · }.

• Random variables are typically denoted by capital letters, such as X,Y, Z, and realisations of

random variables are typically denote in lowercase such as x, y, z.

• We writeX ∼ p if the random variableX is distributed according to probability mass function

or density p.

• We write “i.i.d.” as shorthand for “independently and identically distributed”. This is typically

used for statements like: “let X1, · · · , Xn ∼ p be i.i.d.” which means that the variables

are mutually independent and are each distributed identically according to probability mass

function or density p.

• We write E
X∼p

[X] for the expectation of the random variableX , whereX is distributed accord-

ing to probability mass function (or density) p. Where it is clear from context, we write E
X

[X]

or even E[X].

• Similarly, we write P
X∼p

[A] for the probability of event A occuring when X is distributed

according to p, which we often write as P
X

[A] or even P[A].

• The indicator random variable over the set A is written 1{A}.
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• We use ⊗ to denote the product of two distributions. For example if Z ∼ pX ⊗ pY then

Z = (X,Y ) is a random vector where X ∼ pX independently of Y ∼ pY . We overload this

notation slightly so we can write something like Z ∼ p⊗n to mean that Z is a random vector

of dimension n where each component is i.i.d. according to p.

• We write N (0, 1) for a standard normal random variable and more generally N (µ, σ2) for a

normal random variable with mean µ and variance σ2. We define ϕ(x) := 1√
2π

exp
(
−1

2x
2
)

for the density of a N (0, 1) random variable, and Φ(x) :=
∫ x
−∞ ϕ(t) dt for its cumulative

distribution function. The n-dimensional case is written ϕn(x) := 1√
2π
n exp

(
−1

2x
Tx
)
.

• We write U [A] for the uniform distribution over the set A. For example U([−1, 1]) is the con-

tinuous uniform distribution over the interval [−1, 1] and U ({−1, 1}n) is the discrete uniform

distribution over the Boolean hypercube {−1, 1}n.

Assume all sets are measurable.

Assume all functions are measurable with respect to counting measure or Lebesgue measure in the

discrete or continuous cases respectively.

We will use the following abbreviations in this thesis.

• i.i.d. — independently and identically distributed

• p.m.f. — probability mass function

• p.d.f. — probability density function

• c.d.f. — cumulative distribution function

• PAC — probably approximately correct (see Chapter 2)

• ERM — empirical risk minimisation (see Chapter 2)

• VC dimension/theory — Vapnik Chervonenkis dimension/theory (see Chapter 2)

• DNF — disjunctive normal form (see Chapter 2)

• CNF — conjunctive normal form (see Chapter 2)

• SVM — support vector machine (see Chapter 2)

• KL divergence — Kullback-Leibler divergence (see Chapter 3)

• MI — mutual information (see Chapter 3)

• CMI — conditional mutual information (see Chapter 3)

• LTF — linear threshold function (see Chapter 4)

• PTF — polynomial threshold function (see Chapter 4)
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• LMN algorithm — the algorithm by Linial, Mansour, and Nisan (1993) (see Chapter 5)



CHAPTER 2

Classical results in learning theory

2.1 Preliminaries

In the standard setting of statistical learning theory, we are given a training set consisting of m i.i.d.

samples

Z =
(
Z(1), · · · , Z(m)

)
(2.1)

with each Z(i) drawn i.i.d. from a fixed distribution D and of the form Z(i) :=
(
X(i), Y (i)

)
. The X(i)

are known as the features and range over the feature space X . For each feature X(i) we are given an

associated label Y (i) which range over the label space Y . Let Z := X × Y .

In the simplest scenario, the relationship between the features X(i) and labels Y (i) is given by a de-

terministic but unknown function c : X → Y called a concept, so that Y (i) = c(X(i)) for all

i ∈ {1, · · · ,m}. The aim is to learn what the function c is using the training set Z. The catch is

that by attempting to determine what c is, you implicitly need to determine how it behaves on features

that are not contained in the training set! This is of course in general impossible without making some

assumptions on c, and so the assumption we will make is that c comes from a fixed predetermined class

of functions C called the concept class.

A learning algorithm is a (possibly randomized) algorithm A : Zm → H that takes as input a training

set Z, and outputs a guess h : X → Y of the target concept, which we call a hypothesis. Note that the

set of all hypothesis conceptsH that the algorithm may output, which we call the hypothesis class, may

not necessarily coincide with the set of concepts C which the true concept resides in.

As an example, suppose our concept class C consists of threshold functions Iθ : [−1, 1]→ {0, 1} of the

form Iθ : x 7→ 1{x ≥ θ} for θ ∈ [−1, 1]. Here the feature space is X = [−1, 1] and the label space

is binary Y = {0, 1}. Further suppose that the feature space distribution is uniform DX = U([−1, 1]).

Then the task is: given samples (X(1), Y (1)), · · · , (X(m), Y (m)) where X(i) ∼ U([−1, 1]) i.i.d. and

6



2.1 PRELIMINARIES 7

Y (i) = Iθ∗(X
(i)) for an unknown Iθ∗ ∈ C, try to determine the concept Iθ∗ . We can’t hope to predict

the exact value of θ∗ as it is an element of the reals, but we may hope to at least get close. An intuitive

learning algorithm might be one that finds the smallest X(i) with a label of Y (i) = 1 and output that

X(i). This is an example of a learning algorithm where the hypothesis space H does agree with the

concept space C.

To measure how good the hypothesis output by a particular learning algorithm is, we introduce a loss

function ` : H × Z → [0,∞), which takes as input a learnt hypothesis h ∈ H, as well as a particular

feature vector and label pair (x, y) ∈ Z , and outputs a value capturing how close the hypothesis’ pre-

dicted label h(x) is to the true target label y, with lower values being better. The loss is typically zero if

the hypothesis correctly predicts the label, i.e,., if h(x) = y then `(h, (x, y)) = 0.

The population risk of a hypothesis h ∈ H compared to the true concept c ∈ C, with respect to a loss

function ` : H×Z → [0,∞) and distribution D over Z , is defined as

Rc,D(h) := E
(X,Y )∼D

[`(h, (X,Y ))] , (2.2)

namely the expected loss when (X,Y ) is drawn according to D. This definition formalises what it

means to have a “good” hypothesis, in that it should have Rc,D(h) ≈ 0. When it is clear from context

we will drop the subscript and write R(h) to mean Rc,D(h).

Note that this definition captures the idea that in order for a hypothesis to do well in terms of having low

population risk, it must do more than simply perform well on the given training data — it must minimize

the expected loss over all of D even on features it has not encountered in the training set!

Hence a tentative definition for a good learning algorithmA is one that consistently outputs a hypothesis

with close to zero population risk, i.e.,

R(A(Z)) ≈ 0 (2.3)

for all possible Z.

Alas, this may be too much to hope for, because the samples Z are generated probabilistically and so

there is a chance that it may be wholly unrepresentative of its underlying distribution D.

Continuing with our threshold functions example, the concept could be θ∗ = 0, but if the samples are

such that X(i) ≥ 1
2 for all i ∈ [m] then the samples do not provide much useful information other than

that θ∗ ≤ 1
2 and so no reasonable algorithm could come close to learning a hypothesis with close to



2.2 PAC LEARNING 8

zero population loss. However, this sample, although possible, is unlikely to occur. Most samples would

have a roughly even number of positive X(i) as well as negative X(i).

This motivates us to define a good learning algorithm A as one that, given Z, outputs a hypothesis with

close to zero population loss with high probability over Z. This is the idea behind the definition of the

“probably approximately correct” (PAC) learning framework of Valiant (1984).

2.2 PAC learning

To introduce PAC learning, we will assume for the remainder of this chapter that the label space is

binary, i.e., Y = {0, 1}. Although this is quite a restrictive assumption, we will see that the theory for

this special case is already very rich. In this case, the only reasonable loss function to use is the zero-one

loss,

`0/1(h, (x, y)) := 1{h(x) 6= y}, (2.4)

so that

R(h) = E
(X,Y )∼D

[
`0/1(h, (X,Y ))

]
= P

(X,Y )∼D
[h(X) 6= Y ] . (2.5)

We will also assume that H always contains a hypothesis with zero population risk. This is called the

realisability assumption.

DEFINITION 1 (Realisability assumption). We say that the realisability assumption holds for a hypoth-

esis class H with respect to concept class C if for any concept c ∈ C and any distribution D over X ,

there always exists h ∈ H with Rc,D(h) = 0.

Finally, we also assume that the learning algorithm outputs h ∈ C, or in other words, H = C. This is

called proper learning. We will discuss the improper case, where the learning algorithm is allowed to

output h 6∈ C in Section 2.2.1.

We are now ready to introduce the definition of PAC learning.

DEFINITION 2 (Proper realisable PAC learning (Valiant, 1984)). Assume that the realisability assump-

tion (Definition 1) holds, that H = C, and that Y = {0, 1}. Then H is said to be PAC learnable (in the

proper realisable setting) if there exists a learning algorithm A : Zm → H and a polynomial function

poly(·, ·) such that for any c ∈ C, any distribution D over Z , any ε > 0 and δ > 0,

P
Z∼D⊗m

[R(A(Z)) ≤ ε] ≥ 1− δ (2.6)
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given m ≥ poly(1/ε, 1/δ) samples. We say H is efficiently PAC learnable if the running time of A is

poly(1/ε, 1/δ) and we call A an efficient PAC learner forH.

In other words, given enough (but only polynomially many) samplesm, the learning algorithm will, with

arbitrarily high probability 1− δ, output a hypothesis with arbitrary low population risk R(A(Z)) ≤ ε.

Note that ε plays the role of guaranteeing that the hypothesis h is “approximately correct” in that it agrees

with c when evaluated on most inputs, whilst δ ensures this will “probably” happen when learning from

the sample Z.

Different learning algorithms A will have different functions poly(·, ·). The sample complexity ofH is

then defined as the smallest possible function.

2.2.1 Proper and improper learners

In the definition of PAC learning we defined above, we required that the learning algorithm must output

a hypothesis h ∈ C, i.e., we have H = C. Any learning algorithm satisfying this behaviour is called

a proper learner. However, we may sometimes wish to consider a learning algorithm that outputs a

hypothesis h 6∈ C, i.e., we have H ) C. This can often make the learning problem much easier and is

called improper learning.

For example, consider the concept class C consisting of 3-term disjunctive normal form (DNF) formulae.

This is the set of all disjunctions T1 ∨ T2 ∨ T3 where each Ti is a conjunction of literals over Boolean

variables x1, · · · , xn. It can be shown that C is not efficiently PAC learnable under standard complexity

assumptions (NP 6= RP)1 using any proper learner, i.e., if we require the learning algorithm to output a

3-term DNF (Pitt and Valiant, 1988; Kearns and Vazirani, 1994). However, note that by distributivity,

we can rewrite any 3-term DNF formula as

T1 ∨ T2 ∨ T3 =
∧

u∈T1,v∈T2,w∈T3

(u ∨ v ∨ w). (2.7)

Hence 3-term DNFs are a subset of the class of conjunctive normal form (CNF) formulae where each

clause is a disjunction of at most 3 literals, as in the right hand side of Equation 2.7 above — we will call

this form 3-CNF. It turns out that if the learning algorithm for 3-term DNFs is allowed to be improper,

then 3-term DNFs can be learned in polynomial time by outputting them in the form of a 3-CNF (Pitt

and Valiant, 1988; Kearns and Vazirani, 1994).

1https://complexityzoo.net/Complexity_Zoo

https://complexityzoo.net/Complexity_Zoo
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2.2.2 Agnostic learning

Another direction to extend our original definition of PAC learning is to relax the realisability assumption

(Definition 1). We no longer assume that the samples are perfectly labelled according to some concept

c ∈ C, or that a target concept exists at all. Instead, we just assume that we are getting labelled data

from some process, which may even introduce noise into the labels. This more closely resembles real

world data, which is typically not perfectly labelled. The goal now is to find the model that best explains

the data from a predetermined hypothesis class such as linear threshold functions, decision trees, neural

networks, etc.

In this case the population risk R(h) of any hypothesis cannot be made arbitrarily small, but is instead

lower bounded by infh∈HR(h). We define a good learning algorithm as one that outputs a hypothesis

whose population risk can become arbitrarily close to infh∈HR(h).

DEFINITION 3 (Proper agnostic PAC learning (Haussler, 1992)). AssumeH = C and Y = {0, 1}. Then

H is PAC learnable (in the proper agnostic setting) if there exists a learning algorithm A : Zm → H

and a polynomial function poly(·, ·) such that for any distribution D over Z , any ε > 0 and δ > 0,

P
Z∼D⊗m

[
R(A(Z)) < inf

h∈H
R(h) + ε

]
≥ 1− δ (2.8)

given m ≥ poly(1/ε, 1/δ) samples. We say H is efficiently agnostically PAC learnable if the running

time of A is poly(1/ε, 1/δ) and we call A an efficient agnostic PAC learner forH.

Learning in the agnostic setting is typically much harder. For example, Kanade (2017) show that linear

threshold functions are not efficiently agnostically learnable under standard complexity assumptions

(NP 6= RP). On the other hand, LTFs can be learnt in polynomial time in the realizable setting by linear

programming or support vector machines.

We can also make a distinction between proper and improper learners in the agnostic setting. For im-

proper learners, we have H ) C and we only require that the algorithm outputs a hypothesis whose

population risk can become arbitrarily close to infc∈C R(c). In other words, we modify Equation 2.8 to

P
Z∼D⊗m

[
R(A(Z)) < inf

c∈C
R(c) + ε

]
≥ 1− δ. (2.9)
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2.3 Empirical risk minimization

We have now formally defined what it means to have a “good” learning algorithm via the definition

of PAC learning. But how does one find such an algorithm? Even in the realizable setting, the target

concept c and the underlying distribution D is unknown, so we cannot minimize the population risk

directly. However a simple idea would be to find a hypothesis h that instead minimizes the empirical

risk

R̂Z(h) :=
1

m

m∑
i=1

`(h, (Xi, Yi)), (2.10)

since the expected value of the empirical risk is equal to the population risk, and the empirical risk is

easy to compute. This is the empirical risk minimisation (ERM) algorithm.

For example, under the realizable assumption, the minimum empirical risk is zero. If we are able to find

such a h, will that same h also minimize the population risk? Unfortunately, this is not true in general.

If the hypothesis classH is sufficiently complex, it could be the case that h has simply “memorized” the

sample Z. As an extreme example, the learnt hypothesis could simply output 1 when its input exactly

matches one of the training data samples that had a label of 1. This would clearly have zero empirical

risk, but would generalise extremely poorly to unseen data, and is an example of overfitting.

This example shows that a hypothesis class that contains such functions is clearly too complex to prevent

overfitting. Hence a natural question is to ask when exactly a particular hypothesis class is simple enough

so that the learnt hypothesis will generalise well.

2.4 Finite hypothesis classes

A very simple sufficient condition to prevent overfitting is for the hypothesis class H to be finite. Intu-

itively, this is because there are only finitely many hypotheses that are consistent with any given sample

S. As the sample size increases, the number of such hypotheses will shrink, so given enough samples it

is unlikely that a hypothesis that is perfectly consistent with the data would exist, unless that hypothesis

is the target concept.

This is stated more formally in the realizable setting by the following result.
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THEOREM 1 (Mohri et al. (2018)). Suppose the realisability assumption holds, Y = {0, 1}, the loss is

`0/1, and |H| <∞. Let A : Zm → H be an ERM, i.e., R̂Z(A(Z)) = 0. Then

P
Z∼D⊗m

[R(A(Z)) ≤ ε] ≥ 1− δ

for

m ≥ 1

ε

(
log|H|+ log

1

δ

)
.

In other words,H is PAC learnable.

The above bound, however, becomes vacuous when the hypothesis spaceH is infinite, which is typically

the case for most machine learning problems. For example any problem that requires learning a real

number falls into this category. Nevertheless, there are many examples of learning algorithms that

generalise well even when the hypothesis class is infinite. Hence we need a more nuanced way to

measure complexity.

2.5 VC dimension

A most elegant result in learning theory states that a certain combinatorial quantity of H called the

VC dimension (see Definition 4 below) exactly captures the nuances about the PAC learnability of H.

Moreover, this quantity even determines the sample complexity.

THEOREM 2 (Fundamental theorem of statistical learning (Blumer et al., 1989; Shalev-Shwartz and

Ben-David, 2014)). Suppose that the realisability assumption holds, Y = {0, 1}, and the loss is `0/1.

Let d be the VC dimension of hypothesis classH. Then the following are equivalent.

(1) Any proper ERM algorithm is a proper PAC learner forH.

(2) H is properly PAC learnable.

(3) d <∞.

Moreover the proper sample complexity m(ε, δ) ofH satisfies

Ω

(
d+ log(1/δ)

ε

)
≤ m(ε, δ) ≤ O

(
d log(1/ε) + log(1/δ)

ε

)
, (2.11)

with the upper bound being attained by any proper ERM algorithm.
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FIGURE 2.1. Illustration showing that the VC dimension of real intervals is 2 (figure
due to Mohri et al. (2018)). (a) For any two points, all four classifications are attainable
using intervals. (b) No sample of three points can have the classification of (+,−,+)
using intervals.

We now formally define the VC dimension of a hypothesis class, which is named after the two authors

Vapnik and Chervonenkis (1971).

DEFINITION 4 (VC dimension (Vapnik and Chervonenkis, 1971)). The VC dimension of a hypothesis

class H is the size of the largest set of features X ⊆ X for which all 2|X| possible labellings of X are

attainable using classifiers inH.

For example, let H consist of all intervals over the real line. Then for any two distinct points, all

four possible classifications, i.e., (+,+), (+,−), (−,+), (−,−) are attainable using classifiers fromH.

However, no sample of three distinct points can have the classification of (+,−,+). This is illustrated

in Figure 2.1. Hence the VC dimension of intervals over the real line is 2.

2.5.1 Sample complexity of improper and proper learning

There is a logarithmic term of log(1/ε) between the lower and upper bounds of the sample complexity

bounds in Equation 2.11. It turns out these bounds are tight for proper learners in general in that for

certain hypothesis classes the extra logarithmic term is necessary. Under some general conditions onH,

Bousquet et al. (2020) showed that the log(1/ε) term can be removed for proper learners if and only if

a combinatorial parameter ofH known as the dual Helly number is finite.

On the other hand, a landmark result by Hanneke (2016) showed that this logarithmic term can be

removed altogether for improper learners, namely that the improper sample complexity is always

m(ε, δ) = Θ

(
d+ log 1/δ

ε

)
. (2.12)

This again shows that improper learning is often much easier than proper learning.
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2.5.2 Agnostic learning

Similar ideas continue to hold when we consider learning in the agnostic setting instead. In fact the

fundamental theorem of statistical learning continues to hold except that the sample complexities have a

quadratic dependence on 1/ε, which agrees with intuition that agnostic learning is much harder than the

realizable setting.

THEOREM 3 (Fundamental theorem of statistical version, agnostic setting (Blumer et al., 1989; Shalev-Shwartz

and Ben-David, 2014)). Suppose that Y = {0, 1}, and the loss is `0/1. Let d be the VC dimension of

hypothesis classH. Then the following are equivalent.

(1) Any proper ERM algorithm is a proper agnostic PAC learner forH.

(2) H is properly agnostically PAC learnable.

(3) d <∞.

Moreover the proper agnostic sample complexity m(ε, δ) ofH satisfies

m = Θ

(
d+ log 1/δ

ε2

)
(2.13)

which is attained by any proper agnostic ERM algorithm.

Note that unlike the realisable setting, there is no log 1/ε gap in the sample complexity for the agnostic

setting.

2.6 Compression schemes

VC theory is very elegant in that it tells us exactly when a hypothesis class is PAC learnable, what its

optimal sample complexity is, and how well any ERM algorithm will perform. However, it can often be

difficult to compute the VC dimension of a particular hypothesis class.

The theory of compression schemes provides an alternative way to determine how well an ERM algo-

rithm performs that is much simpler to compute and is dependent on the learning algorithm A instead

of the hypothesis classH.
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DEFINITION 5 (Compression scheme (Littlestone and Warmuth, 1986)). A learning algorithm A :

Zm → H is said to have a compression scheme of size k for k < m if A can be decomposed into

a “compression algorithm” κ : Zm → Zk and an “encoding algorithm” ρ : Zk → H where:

(1) The compression algorithm κ takes as input Z ∈ Zm and returns a subsequence of Z of length

k.

(2) The encoding algorithm ρ takes as input the compressed subsequence κ(Z) and reconstructs

the original classifier trained on the full sample Z, that is, ρ(κ(Z)) = A(Z).

One such example is the support vector machine (SVM) algorithm. Recall that the SVM algorithm finds

the largest margin hyperplane, that is, the hyperplane for which the distance to the closest positive and

negative labels in the sample are maximized (see Figure 2.2).

FIGURE 2.2. Illustration of the SVM algorithm, which maximises the margin (distance
to the positive and negative samples) of the separating hyperplane (figure due to Mohri
et al. (2018)).

The SVM algorithm admits a compression scheme because the separating hyperplane is dependent only

on the support vectors, i.e., the points lying on the margin.

The following result shows that any ERM that admits a compression scheme is a PAC learner.

THEOREM 4 (Littlestone and Warmuth (1986)). Suppose that the realisability assumption holds, Y =

{0, 1}, and the loss is `0/1. Further suppose that A : Zm → H is an ERM with a compression scheme

of size k. Then,

P
Z∼D⊗m

[R(A(Z)) ≤ ε] ≥ 1− δ (2.14)
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for

m ≥ O
(

1

ε
log

1

δ
+
k

ε
log

k

ε
+ k

)
. (2.15)



CHAPTER 3

Information-theoretic generalisation bounds

We have seen that the PAC learnability of a hypothesis class is characterised by its VC dimension and

that we can get generalisation bounds for any ERM algorithm. However, VC theory does not tell us how

well any general algorithm will perform outside the class of ERMs. This is to be expected since VC

dimension is a measure of the hypothesis classH only, and is independent of any learning algorithm for

H. Moreover, although any ERM algorithm is sample-optimal, solving the ERM problem can be NP

hard for certain hypothesis classes (Feldman et al., 2012). Hence we would like tools to analyse learning

algorithms in general.

Recently, information-theoretic tools to study generalisation have gathered attention (Russo and Zou,

2016; Xu and Raginsky, 2017; Steinke and Zakynthinou, 2020; Bu et al., 2020). These methods produce

algorithm-dependent generalisation bounds, meaning they can be used to tell us how well any particular

algorithm will generalise. The high level idea is that the mutual information between the input Z ∈

Zm of the learning algorithm and its output hypothesis A(Z) ∈ H is informative of the algorithm’s

generalisation ability. To make these ideas rigorous, we will need to take a rather long detour into

information theory to formalise what we mean by “information”.

3.1 Shannon information theory

In this section we introduce the area of information theory. In particular we will introduce Shannon

entropy, Kullback-Leibler divergence and mutual information for discrete random variables, and some

of their important properties. We will then extend these ideas to the continuous case and discuss the

similarities and differences between the discrete and continuous variants. Proofs of some results will be

given only where we think the proofs are relevant and informative. For a more comprehensive treatment

of the topic, the reader is invited to consult a reference on information theory such as Cover and Thomas

17
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(2006). On the other hand, the reader who is already informed about this topic, for example after having

read Chapter 2 of Cover and Thomas (2006), is invited to skip to Section 3.2.

Information theory has its roots in the landmark paper by Shannon (1948), who was motivated by com-

munication theory. One of his motivating questions was determining the ultimate data compression rate

in communication. The answer turns out to be the entropy H , a fundamental quantity which we will

discuss shortly, and which is connected with mutual information. Since Shannon’s work, information

theory has made fundamental contributions to physics, computer science, statistics, and much more

(Cover and Thomas, 2006).

3.1.1 Entropy

To motivate the definition of entropy, suppose that you are given a random integer between 1 and 16,

with each choice being equally likely, i.e., having probability p = 1/16. How many yes/no questions

are required to determine what integer you are given? The answer is log2(1/p) = 4 by effectively

performing a binary search using the questions. More generally, for an outcome x that occurs with prob-

ability p(x), it takes approximately log2(1/p(x)) yes/no questions, which can be thought of as “bits” of

information, to distinguish it from other outcomes having the same probability. Note log2(1/p(x)) is

only “approximately” correct because of the cases when 1/p(x) is not an exact power of 2. The quan-

tity log2(1/p(x)) can be alternatively interpreted as a measure of surprise or uncertainty in seeing the

outcome x — outcomes that have a lower probability p(x) of occurring have a higher log2(1/p(x)).

Now consider a discrete random variableX taking values x ∈ X , each with probability p(x) := P[X =

x]. The entropy of X is defined as the average value of log2(1/p(x)) — it is the average surprise or bits

of information to distinguish the realisations of X .

DEFINITION 6 (Entropy). Let X be a discrete random variable/vector. Then the (Shannon) entropy of

X is

H(X) := E
X∼p

[
log2

1

p(X)

]
=
∑
x

p(x) log2
1

p(x)
(3.1)

in bits, where we define 0 log 1
0 := 0 as limp→0 p log2

1
p = 0.

For example consider a Bernoulli random variable X that takes value 1 with probability p and 0 with

probability 1− p. Then its entropy is

H(X) = −p log2 p− (1− p) log2(1− p) (3.2)
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bits.

It can be easily checked that the above expression is maximised at p = 1/2 in which case the entropy is

exactly one bit. This makes intuitive sense as the outcome of a coin toss is most uncertain or surprising

when the coin is unbiased. On the other hand, we would not be very uncertain or surprised in seeing the

outcome of the toss of a coin that is heavily biased towards heads or tails. Correspondingly, as p → 0

or p→ 1, the random variable becomes deterministic and Equation 3.2 approaches zero. See Figure 3.1

below for a diagram.

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

H(X)

FIGURE 3.1. Graph of H(X) where X ∼ Bernoulli(p) as a function of p. Entropy is
maximised when p = 1/2.

More generally, entropy is always non-negative, and is equal to zero exactly when the random variable

is deterministic (a constant).

LEMMA 1 (Entropy is non-negative). H(X) ≥ 0 with equality if and only if X is deterministic.

PROOF. For p(x) ∈ (0, 1] we have log2
1

p(x) > 0. When p(x) = 0, by definition p(x) log2
1

p(x) = 0.

Hence
∑

x p(x) log2
1

p(x) ≥ 0. For equality to occur, we must have either p(x) = 0 or p(x) = 1 for all

x since these are the only two cases for which p(x) log2
1

p(x) = 0. �

Also, observe that the definition of entropy is dependent only on the probability mass function p(x), and

not on what values the random variable attains. Suppose we apply a function f to a random variable X .

Then any realisation x ∈ X of X is mapped to f(x). Moreover, if the function f is injective, then the

value f(x) could only have come from the original realisation x, which occurs with probability p(x). So
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after applying f , the resulting random variable attains value f(x) with probability p(x) for each x ∈ X .

Hence the entropy, which is dependent on only the probabilities p(x) remains unchanged.

LEMMA 2. Let f be an injective function and X a random variable/vector. Then

H(f(X)) = H(X). (3.3)

For example adding any constant to a random variable or multiplying a random variable by any non-zero

constant does not change its entropy.

Before introducing our next definition, let us make a quick notational remark. When it is clear from

context, we will use notation like p(x | y) to denote conditional probability mass functions and p(x) to

denote the marginal probability mass functions, where it is clear from context what random variable(s)

the probabilities are being taken with respect to. To be clear, in the two examples, p(x | y) is short for

P[X = x | Y = y] and p(x) is short for P[X = x]. With this in mind, we now define conditional

entropy, which describes the average uncertainty or surprise in a random variable X , conditioned on

another random variable Y .

DEFINITION 7 (Conditional entropy). LetX and Y be two jointly distributed discrete random variables.

The conditional (Shannon) entropy of X given Y is

H(X | Y ) := E
y∼pY

[H(X | Y = y)] (3.4)

=
∑
y

p(y)
∑
x

p(x | y) log
1

p(x | y)
(3.5)

in bits.

In other words, conditional entropy is the entropy of the random variable X | Y = y, averaged over the

values of y.

An important fact is that entropy can never increase after conditioning on another random variable.

LEMMA 3 (Conditioning cannot increase entropy). H(X | Y ) ≤ H(Y ) with equality if and only if X

and Y are independent.

Intuitively, this is saying that knowing some extra information Y can never increase uncertainty about

X on average.
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Finally, we introduce a chain rule for entropy that lets us break up the entropy of a random vector

H(X,Y ) as the sum of the entropy of a single variableH(X) plus the conditional entropy of the second

given the first H(Y | X).

LEMMA 4.

H(X,Y ) = H(X) +H(Y | X). (3.6)

Applying Lemma 3 to this result gives the following.

LEMMA 5.

H(X,Y ) ≤ H(X) +H(Y ) (3.7)

with equality if and only if X and Y are independent.

3.1.2 KL divergence

Next, we introduce a measure of the distance between two probability distributions.

DEFINITION 8 (Kullback-Leibler divergence). Let p(x) and q(x) be two probability mass functions.

Then the Kullback-Leibler (KL) divergence between p and q is

D(p ‖ q) :=
∑
x

p(x) log2
p(x)

q(x)
(3.8)

in bits.

It can be shown that D(p ‖ q) is a measure of the “inefficiency” of assuming the distribution is q when

the true distribution is p.

Note that KL divergence lacks some properties we would expect of a distance. In particular, it is not

symmetric and does not satisfy the triangle inequality. Hence it is more appropriate to call it a “diver-

gence” than a true “distance”. Nonetheless, KL divergence does have the important property that it is

always non-negative, and is equal to zero if and only if the two probability distributions are equal.

THEOREM 5 (Gibbs’ inequality).

D(p ‖ q) ≥ 0 (3.9)

with equality if and only if p = q.
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PROOF. Let P := {x ∈ X : p(x) > 0} be the support of p. Then

D(p ‖ q) =
∑
x∈P

p(x) log2
p(x)

q(x)
(3.10)

= E
X∼p

[
− log2

q(X)

p(X

]
(3.11)

≥ − log2 E
X∼p

[
q(X)

p(X)

]
(3.12)

= − log2

(∑
x∈P

p(x)
q(x)

p(x)

)
(3.13)

= − log2

(∑
x

q(x)

)
(3.14)

≥ − log2 1 (3.15)

= 0, (3.16)

where Equation 3.12 is by Jensen’s inequality (Theorem 32) since x 7→ − log2(x) is convex. �

3.1.3 Mutual information

We are now finally ready to introduce mutual information.

DEFINITION 9 (Mutual information). LetX and Y be two jointly distributed discrete random variables.

Then the mutual information between X and Y is

I(X;Y ) := D(pXY ‖ pX ⊗ pY ) (3.17)

=
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
. (3.18)

Intuitively, this is a measure of similarity between the joint distribution pXY and the product of the

marginals pX ⊗pY , i.e., the distribution if X and Y were independent. In other words, it is a measure of

how “close” X and Y are to being independent. Indeed, as a direct consequence of the non-negativity

of KL divergence (Theorem 5), we have the following.

THEOREM 6. For any two random variables X,Y ,

I(X;Y ) ≥ 0 (3.19)

with equality if and only if pXY = pX ⊗ pY , i.e., X and Y are independent.
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Intuitively speaking, random variables that are close to being independent do not carry much information

about each other, and indeed the mutual information is close to zero; on the other hand, random variables

that are far from being independent must be tightly coupled with each other, and the mutual information

between them is high.

The next lemma states that mutual information is symmetric, hence the name mutual information, and

provides an alternate interpretation of mutual information in terms of entropy.

LEMMA 6. For any two random variables X,Y ,

I(X;Y ) = I(Y ;X) (3.20)

= H(Y )−H(Y | X) (3.21)

= H(X)−H(X | Y ) (3.22)

Combining the non-negativity of KL divergence (Theorem 5) and the above result shows that H(X |

Y ) ≤ H(X) with equality if and only if X and Y are independent, which is Lemma 3.

Equation 3.21 and Equation 3.22 show that mutual information may alternatively be thought of as how

much the entropy of one variable, say X , goes down when conditioned on a second variable Y . Intu-

itively, after seeing Y , we have gained H(X) − H(X | Y ) = I(X;Y ) bits of information about X

since our uncertainty about X has been reduced by that amount.

Next, we show that scaling a variable does not change the mutual information.

LEMMA 7.

I(aX;Y ) = I(X;Y ) (3.23)

for any a 6= 0.
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PROOF.

I(aX;Y ) = H(aX)−H(aX | Y ) (3.24)

= H(aX)− E
y∼pY

[H(aX | Y = y)] (3.25)

= H(X)− E
y∼pY

[H(X | Y = y)] (3.26)

= H(X)−H(X | Y ) (3.27)

= I(X;Y ) (3.28)

where Equation 3.24 is due to Lemma 6, Equation 3.25 by definition of conditional entropy, Equa-

tion 3.26 by Lemma 2 since x 7→ ax is injective for a 6= 0, Equation 3.27 by definition of conditional

entropy, and Equation 3.28 by Lemma 6. �

Note that symmetry of mutual information also implies I(X; aY ) = I(X;Y ), or more generally that

I(aX; bY ) = I(X;Y ) for a, b 6= 0.

Our last property of mutual information states that mutual information between two variables cannot

increase as a result of processing any of the two variables. To state this result, let us first make a

definition.

DEFINITION 10. Random variables X,Y, Z are said to form a Markov chain, denoted X → Y → Z if

the conditional distribution of Z depends only on Y and is conditionally independent of X , i.e.,

p(z | y, x) = p(z | y) (3.29)

for all x, y, z.

Intuitively, this is saying that all the “information” fromX and Y that can be used to determine Z can be

found in Y alone, where the term “information” is being used in a loose sense. Any “information” from

X that can be used to determine Z always passes through Y first, and consequently, having conditioned

on Y , there is no “information” between X and Z, i.e., X and Z are conditionally independent given Y .

In fact, it can be shown that X → Y → Z if and only if X and Z are conditionally independent given

Y .

With this definition in mind, we can now state the data processing inequality.
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THEOREM 7 (Data processing inequality). Suppose X → Y → Z form a Markov chain. Then

I(X;Y ) ≥ I(X;Z). (3.30)

For example, if Z = f(Y ) is a deterministic function of Y , then X → Y → Z = f(X) form a Markov

chain and so the data processing inequality implies

I(X;Y ) ≥ I(X; f(Y )). (3.31)

Finally, we define a conditional variant of mutual information, following the same ideas as for the

definition of conditional entropy.

DEFINITION 11 (Conditional mutual information). Let X,Y, Z be three jointly distributed discrete ran-

dom variables. The conditional mutual information between X and Y given Z is

I(X;Y | Z) := E
z∼pZ

[I(X | Z = z;Y | Z = z)] (3.32)

=
∑
z

p(z)
∑
x

∑
y

p(x, y | z) log
p(x, y | z)

p(x | z)p(y | z)
(3.33)

In other words, conditional mutual information is the mutual information between the random variables

X | Z = z and Y | Z = z, averaged over all possible values of z.

3.1.4 Differential entropy

All the above quantities can be defined for continuous random variables by replacing sums with integrals,

and probability mass functions with probability density functions. In the continuous case, it is most

natural to take logarithms base e instead of base 2 as we were doing previously, which leads to entropy

and related quantities to be given in nats instead of bits. The continuous analogue for Shannon entropy

is differential entropy.

DEFINITION 12 (Differential entropy). Let X be a continuous random variable/vector with probability

density function f(x) and support X := {x : f(x) > 0}. Then the differential entropy of X is

h(X) :=

∫
X
f(x) ln

1

f(x)
dx (3.34)

in nats.
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Note that we use lower case h for differential entropy, to distinguish it from Shannon entropy H .

Great care needs to be taken when manipulating differential entropy as some properties that hold for

Shannon entropy do not necessarily carry over to differential entropy. As an example, let us compute

the differential entropy of a random variable X taking values uniformly over the real interval [0, a] for

a > 0. Then X has p.d.f. f(x) = 1/a over [0, a] and so its differential entropy is

h(X) =

∫ a

0

1

a
ln a dx = ln a. (3.35)

Observe that taking a = 1 tells us that that the differential entropy of a uniform [0, 1] random variable is

zero. Hence, unlike Shannon entropy, a differential entropy of zero does not correspond to a determinis-

tic random variable. Determinism occurs in the limit as a→ 0 in which case the differential entropy ln a

limits to −∞. This also shows that differential entropy can be negative, unlike Shannon entropy. More

generally, taking any 0 < a < 1 will result in H(X) = ln a < 0. Compare these observations with

Lemma 1. The reason that Lemma 1 no longer holds is because the proof relied on the probability mass

function satisfying p(x) ≤ 1 which subsequently implies that log2
1

p(x) > 0. However, for a density f , it

is not necessarily true that f(x) ≤ 1, and so if f(x) > 1 it is possible for differential entropy to become

negative.

Furthermore observe that scaling X by any positive a 6= 1 changes its differential entropy. Generally,

we have the following result.

LEMMA 8. Let X be a continuous random variable/vector and a 6= 0. Then

h(aX) = h(X) + ln a. (3.36)

PROOF. First assume a > 0. The c.d.f. of the random variable aX is

FaX(x) := P [aX ≤ x] (3.37)

= P
[
X ≤ x

a

]
(3.38)

= FX

(x
a

)
(3.39)

where FX is the c.d.f. of X . Differentiating both sides with respect to x, we obtain that the density of

aX is

faX(x) =
1

a
fX

(x
a

)
(3.40)
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where fX is the density of X . Hence,

h(aX) = −
∫

1

a
fX

(x
a

)
ln

(
1

a
fX

(x
a

))
dx (3.41)

= ln a

∫
1

a
fX

(x
a

)
dx−

∫
1

a
fX

(x
a

)
ln fX

(x
a

)
dx (3.42)

= ln a

∫
fX

(x
a

)
d
(x
a

)
−
∫
fX

(x
a

)
ln fX

(x
a

)
d
(x
a

)
(3.43)

= ln a+ h(X). (3.44)

For the case a < 0, the c.d.f. of aX is given by

FaX(x) := P [aX ≤ x] (3.45)

= P
[
X ≥ x

a

]
(3.46)

= 1− FX
(x
a

)
(3.47)

and so the density is

faX(x) = −1

a
fX

(x
a

)
. (3.48)

Proceeding with similar steps to the case a > 0 gives the result. �

This is markedly different behaviour to Shannon entropy as the Shannon entropy of a random variable

remains unchanged after applying any injective function to it (see Lemma 2). The one saving grace of

differential entropy is that it is invariant to translations. This can be easily seen by using a change of

variables in the definition of differential entropy.

LEMMA 9. Let X be a continuous random variable/vector and c a constant. Then

h(X + c) = h(X). (3.49)

Finally, let us conclude our discussion on differential entropy with the important example of a normal

random variable. In light of the above result, we will look at normal random variables with mean zero

only.

THEOREM 8. Let X ∼ N (0, σ2). Then

h(X) =
1

2
ln
(
2πeσ2

)
. (3.50)
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PROOF. For the case σ = 1 we have

h(X) = −
∫
R

1√
2π

exp

(
−1

2
x2
)

ln

[
1√
2π

exp

(
−1

2
x2
)]

dx (3.51)

=
1

2
ln 2π

∫
R

1√
2π

exp

(
−1

2
x2
)
dx (3.52)

+
1

2

∫
R

1√
2π
x2 exp

(
−1

2
x2
)
dx

=
1

2
ln 2π +

1

2
(3.53)

=
1

2
ln 2πe, (3.54)

where Equation 3.53 follows because densities integrate to one, and E[X2] = σ2 = 1. For general σ,

the result follows by Lemma 8. �

3.1.5 Differential KL divergence

Because of the many undesirable properties of differential entropy, it is sometimes useful to study KL

divergence instead. Just like differential entropy, this is defined by taking the definition in the discrete

case and replacing probability mass functions with densities, sums with integrals, and, for convenience,

base 2 logarithms with natural logarithms.

DEFINITION 13 ((Differential) Kullback-Leibler divergence). Let f(x) and g(x) be two probability

density functions. Then the KL divergence between f and g is

D(f ‖ g) :=

∫
X
f(x) ln

f(x)

g(x)
dx (3.55)

where X = {x : f(x) > 0} is the support of f .

Unlike differential entropy however, KL divergence is always non-negative even in the continuous case,

due to Jensen’s inequality continuing to hold in the continuous case. In other words, Gibbs’ inequality

(Theorem 5) continues to hold.

For this reason, instead of studying the entropy of a density f , it can be useful to instead study the KL

divergence between f and a fixed reference density such as the normal density, i.e., the quantity

D

(
f(x)

∥∥∥∥ 1

σ
√

2π
exp

(
− 1

2σ2
x2
))
≥ 0. (3.56)
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We will see in Section 6.4.2 that the normal density maximises differential entropy over all continuous

random variables with a given variance. Intuitively, having Equation 3.56 close to zero implies that f

is close to the normal density, and so we might expect f has close to maximum differential entropy;

conversely having large values of Equation 3.56 implies that f is far from being normal, and so we

might expect that its differential entropy is much lower compared to that of a normal. In fact, as we will

see in Section 6.4.2, if σ2 is chosen to be the variance of (the random variable associated with) f , then

D

(
f(x)

∥∥∥∥ 1

σ
√

2π
exp

(
− 1

2σ2
x2
))

=
1

2
ln
(
2πeσ2

)
− h(f). (3.57)

In other words Equation 3.56 reduces to the difference between the differential entropy of f to that of

the corresponding normal with the same variance. For this reason, KL divergence is often called relative

entropy; it measures the entropy of f , relative to another reference distribution.

Note that in the discrete case when the support is finite, one has an analogous statement when taking the

KL divergence with respect to the uniform distribution over the support.

3.1.6 Differential mutual information

Finally, we can extend mutual information to the continuous case in the obvious way.

DEFINITION 14. The mutual information between two continuous random variables/vectors X and Y

is

I(X;Y ) = D(fXY ‖ fX ⊗ fY ) (3.58)

=

∫∫
fXY (x, y) ln

fXY (x, y)

fX(x)fY (y)
dx dy. (3.59)

Because KL divergence is non-negative in the continuous case, so too is mutual information, with mutual

information being zero if and only if the two variables are independent, i.e., Theorem 6 continues to hold

for the continuous case.

Additionally, all the properties that that mutual information satisfied in the discrete case continue to

carry over to the continuous case. Namely, (differential) mutual information is symmetric, I(X;Y ) =

I(Y ;X). It is the reduction in entropy after conditioning on the second variable, I(X;Y ) = H(X) −

H(X | Y ). It is invariant to scaling in either variable, I(aX; bY ) = I(X;Y ) for a, b 6= 0. Finally, it

continues to satisfy the data processing inequality.
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The upshot of all this is that KL divergence, and in particular mutual information, shares the same

properties in both the discrete and continuous cases, and so for the most part we will not make too great

a distinction between the two cases. However, the same is categorically not true for the continuous

analogue of entropy, and so great care must be taken when working with this quantity. This is why we

slightly overload notation and write D(f ‖ g) and I(X;Y ) for both the discrete and continuous cases,

but we make a notational distinction between differential entropy h and Shannon entropy H .

3.2 Mutual information generalisation bounds

Having rigorously introduced some foundational concepts in information theory, we are finally ready to

see how this ties in with deriving generalisation bounds for a learning algorithm. As discussed at the

very beginning of this chapter, the high level idea is to look at

I(Z;A(Z)), (3.60)

the mutual information between the training samples Z ∈ Zm given to the learning algorithm A, and

the hypothesis that the algorithm outputs A(Z) ∈ H. Note that Z is a random vector consisting of m

i.i.d. samples from distribution D, and so A(Z) is also a random variable/vector.

If the mutual information between the two quantities is very low, then we know that they are close

to being independent (see Theorem 6). Intuitively, this means the learnt hypothesis A(Z) is not very

dependent on the training data Z, so modifying Z will not change A(Z) too much, and hence the learnt

hypothesis is unlikely to overfit to its training data. On the other hand, if the mutual information is

very high, this suggests the learnt hypothesis is highly sensitive to the input samples, and so it may be

overfitting. These ideas were made formal in the work of Russo and Zou (2016) and Xu and Raginsky

(2017) who showed that I(Z;A(Z)) can be used to bound the expected generalisation error, that is, the

expected difference between the empirical risk and population risk.

THEOREM 9 (Russo and Zou (2016); Xu and Raginsky (2017)). Suppose A : Zm → H is a (possibly

randomised) learning algorithm, and that the loss function has bounded range, i.e., is of the form ` :

H×Z → [0, 1]. Then ∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤

√
1

2m
I(Z;A(Z)). (3.61)
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The mutual information quantity above is assumed to be given in nats, i.e., all logarithms are taken in

base e, even in the discrete case where we have previously defined all information-theoretic quantities

using base 2. Since log2 x = lnx
ln 2 , if we have computed I(Z;A(Z)) in bits, we can convert it to nats by

multiplying by ln 2.

Let us make a few remarks about Theorem 9. Firstly, note that there is no requirement for Y = {0, 1},

as was the case for VC theory and compression schemes. Consequently, there is no restriction on what

loss function we use, only that it needs to output values in the range [0, 1].

Secondly, we allow the learning algorithm A to be randomised. In fact, if the feature vectors are con-

tinuous (e.g., X = Rn), then the learning algorithm must be randomised in order to get non-vacuous

bounds in Theorem 9. This is because in the continuous case,

I(Z;A(Z)) = h(A(Z))− h(A(Z) | Z) (3.62)

= h(A(Z))− E
z∼pZ

[h(A(Z) | Z = z)] . (3.63)

However, if A is deterministic, the random variable/vector A(Z) | Z = z is deterministic for each

fixed value z and so its differential entropy h(A(Z) | Z = z) is −∞, hence the mutual information

I(Z;A(Z)) is infinite. In the discrete case, this is not a problem because the Shannon entropy of a

deterministic discrete random variable is zero and so

I(Z;A(Z)) = H(A(Z)). (3.64)

Indeed we will see these observations play out in Chapter 6.

On the flip side, note that it is possible for I(Z;A(Z)) = 0. As we have seen before, mutual information

is always non-negative, and is zero if and only if the two arguments, here Z and A(Z), are independent

(Theorem 6). For this to be the case, the learning algorithm must ignore the inputs Z that it is given.

For example, a “learning” algorithm that always outputs the same hypothesis h, regardless of its inputs

Z, would have I(Z;A(Z)) = I(Z;h) = 0. Theorem 9 then implies the expected generalisation error

is zero, but clearly this is a terrible learning algorithm, if it can be called a learning algorithm at all.

There is no contradiction here, however. Although the empirical and population risks are the same

(in expectation), the population risk R(h) is in general terrible, and R(h) is what we ultimately want

to minimize. This example shows that having low (expected) generalisation error is not sufficient to

guarantee a good learning algorithm; we also require one of either R(A(Z)) or R̂Z(A(Z)) to be low

as well.
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Finally, if A is an ERM and the realisability assumption holds, then R̂Z(A(Z)) = 0 and so Theorem 9

reduces to

E
Z

[R(A(Z))] ≤
√

1

2m
I(Z;A(Z)). (3.65)

By Markov’s inequality (Theorem 33), this then implies

P [R(A(Z)) ≥ ε] ≤
√

1

2mε2
I(Z;A(Z)). (3.66)

Letting δ :=
√

1
2mε2

I(Z;A(Z)) and solving for m implies that

P [R(A(Z)) ≥ ε] ≤ δ, (3.67)

or equivalently that

P [R(A(Z)) < ε] ≥ 1− δ, (3.68)

for

m ≥ I(Z;A(Z))

2δ2ε2
. (3.69)

Note that Equation 3.68 is in the form of the definition for PAC learning (see Equation 2.6) and so

Equation 3.69 gives us sample complexity bounds for the learning algorithm A. Unfortunately, the

dependence on δ and ε is suboptimal, since VC theory already tells us that the sample complexity of

any ERM A is no more than O
(
d log(1/ε)+log(1/δ)

ε

)
(see Equation 2.11). This is because Theorem 9

only provides bounds in expectation, and so applying Markov’s inequality produces quite weak bounds.

In this sense, the expected generalisation error bounds are qualitatively weaker compared to the PAC

learning sample complexity bounds attained by VC theory. On the other hand, this is the price to pay

for generality — the framework here allows for arbitrary Y , more general loss functions `, and works

for any algorithm A, even randomised ones.

Some recent work has showed that if we a different measure of information such as Sibson’s α-mutual

information Iα(Z;A(Z)), a generalisation of mutual information (Sibson, 1969; Verdú, 2015), or max-

imal leakage (Issa et al., 2016), then this can be used to obtain high probability bounds, that is, sam-

ple complexity bounds that are polylogarithmic in 1/δ instead of polynomial in 1/δ (Esposito et al.,

2020a,b). For example, Esposito et al. (2020b) show that Sibson’s α mutual information can be used to

derive a high probability bound that results in sample complexity

m ≥
Iα(Z;A(Z)) + ln 2 + α

α−1 log 1
δ

2ε2
. (3.70)
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Unfortunately, computing α mutual information is much more difficult as many of the natural properties

that mutual information satisfies do not carry over. In particular, α mutual information is not symmetric

and does not satisfy a chain rule (Steinke, 2023).

3.3 Individual sample mutual information generalisation bounds

We have seen that I(Z;A(Z)) is infinite when Z is continuous and A deterministic. This is highly

undesirable, as many learning algorithms fall into this category despite having good generalisation guar-

antees. For example, the SVM algorithm with X = Rn falls into this category. This is despite the fact

that, in the realisable case, SVM is an ERM and contains a compression scheme, so we can bound its

sample complexity using either the results of VC theory or compression schemes.

There are a few ways to address this issue. An idea explored in Bu et al. (2020) is to look at the mutual

information between one sample Z(i) and the output hypothesis A(Z), i.e., the quantity

I(Z(i);A(Z)), (3.71)

instead of the mutual information between the entire sample and the output hypothesis I(Z;A(Z)).

The advantage of this approach is that even if Z is continuous and A is a deterministic function of Z,

it is often the case that A is not a deterministic function of a single sample Z(i) alone. This is because,

as long as the algorithm is making use of the other Z(j) for j 6= i, those Z(j) induce randomness in the

algorithm A, when viewed as taking Z(i) alone as input. In this case, I(Z(i);A(Z)) is not necessarily

infinite anymore. We will see an example of this distinction playing out in Chapter 6.

The following result shows that, what is essentially the mean of I(A(Z);Z(i)) over all samples i, can

be used to bound the expected generalisation error.

THEOREM 10 (Bu et al. (2020)). SupposeA : Zm → H is a (possibly randomised) learning algorithm,

and that the loss function satisfies ` : H×Z → [0, 1]. Then∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤ 1

m

m∑
i=1

√
1

2
I(Z(i);A(Z)). (3.72)
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3.4 Conditional mutual information generalisation bounds

Steinke and Zakynthinou (2020) explore an alternative way to address the problem of I(Z;A(Z)) being

infinite. The idea is to look at a conditional mutual information quantity, where the conditioning is done

in a clever way so that the conditional mutual information is always finite.

More specifically, we are given 2m i.i.d. samples Z̃ ∈ Z2×m instead of the usualm. It will be helpful to

think of this as m pairs of samples. From each of the these pairs, one of the two data points are picked

uniformly at random. Let S ∈ {0, 1}m be a random variable denoting the m indices of which data point

is being picked, and let Z̃S ∈ Zm denote the selected m points. See Figure 3.2 for an illustration.

0

1

ZS, S = (0, 1, 1, 1, 0, 1)

Z̃

FIGURE 3.2. Illustration of the conditional mutual information framework. The two
rows of squares represents Z̃ with m = 6. The red squares represent Z̃S for a particular
choice of S.

We look at the mutual information between A(Z̃S), the output hypothesis of the learning algorithm

when given the selected m points, and S, the indices used to select the points, conditioned on the 2m

samples Z̃, i.e., the quantity

I
(
S;A(Z̃S) | Z̃

)
. (3.73)

Intuitively, the above quantity measures how well we can distinguish the m data points the learning

algorithm was trained on from the m “spurious” data points which were not used in the algorithm,

by looking at the output hypothesis of the learning algorithm. In contrast, the (unconditional) mutual

information I(A(Z);Z) measures how well we can reconstruct the input to the learning algorithm,

by looking at the output hypothesis. Importantly, the conditional variant is always bounded in that

I
(
S;A(Z̃S) | Z̃

)
≤ m ln 2 nats.

This quantity can be used to bound the expected generalisation error, in a similar way to Theorem 9.



3.5 LEARNING ALGORITHMS WITH LOW INFORMATION 35

THEOREM 11 (Steinke and Zakynthinou (2020)). Suppose A : Zm → H is a (possibly randomized)

learning algorithm, and that the loss function satisfies ` : H×Z → [0, 1]. Then∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤

√
2

m
I
(
S;A(Z̃S) | Z̃

)
(3.74)

Note that of course the generalisation bound is still vacuous when I
(
S;A(Z̃S) | Z̃

)
is close to its

maximum value m ln 2. This is unavoidable because some learning algorithms indeed overfit and so the

generalisation error necessarily must be vacuous in that case. However, Steinke and Zakynthinou (2020)

illustrate with the example of learning threshold functions over R that I
(
S;A(Z̃S) | Z̃

)
can be Θ(1)

even when I(Z;A(Z)) is infinite.

3.5 Learning algorithms with low information

We have seen that a variety of information-theoretic quantities can be used to bound the expected gen-

eralisation error of a learning algorithm. However, are there simple ways to compute these information-

theoretic quantities? For certain classes of learning algorithms, bounds on these quantities are known.

3.5.1 Differentially private algorithms

One such class of learning algorithms are those that are privacy-preserving in the sense that we define

below.

DEFINITION 15 (Differential privacy (Dwork et al., 2006)). A randomized learning algorithm A :

Zm → H is (ε, δ)-differentially private if for any two training sets Z,Z ′ ∈ Zm that differ in a sin-

gle element (i.e. Z(i) 6= Z ′(i) for some i, and Z(j) = Z ′(j) for all j 6= i) and for any set of hypotheses

H ⊆ H,

P [A(Z) ∈ H] ≤ exp(ε)P
[
A(Z ′) ∈ H

]
+ δ. (3.75)

Intuitively, differential privacy is saying that if one of the training data points is changed, the distribution

in the hypotheses that the learning algorithm outputs will not be changed by too much. It is natural to ex-

pect that such learning algorithms also have low mutual information because if changing the inputs toA

does not significantly affect its output, then the input does not provide much information in determining

the output either.
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Indeed, it has been shown (McGregor et al., 2010; Bun and Steinke, 2016) that if A is a randomised

differentially private learning algorithms with δ = 0, then

I(Z;A(Z)) ≤ 1

2
ε2m. (3.76)

Furthermore, Steinke and Zakynthinou (2020) establish the analogous result for the conditional variant,

i.e.,

I
(
S;A(Z̃S) | Z̃

)
≤ 1

2
ε2m. (3.77)

3.5.2 Compression schemes

Recall from Section 2.6 that a learning algorithm A : Zm → H has a compression scheme of size k if

only k of its m inputs are used in determining the output hypothesis. This is another situation where we

might expect to get low information since not all the information in the inputs are used by the algorithm.

Indeed, Steinke and Zakynthinou (2020) show that for such algorithms,

I
(
S;A(Z̃S) | Z̃

)
≤ k ln(2m). (3.78)

These two examples also show that the conditional mutual information approach to generalisation

bounds encompass existing techniques. Dwork et al. (2015) show directly (i.e., without using the infor-

mation theoretic framework described here) that differentially private algorithms generalise well in the

context of adaptive data analysis, and of course we saw in Section 2.6 that algorithms which admit a

compression scheme also generalise well.



CHAPTER 4

Applications to learning linear threshold functions

We have seen that various information-theoretic quantities can be used to derive expected generalisation

error bounds. For certain classes of learning algorithms, such as those that admit compression schemes,

or are differentially private, analytic upper bounds on the information-theoretic quantities exist, as dis-

cussed in Section 3.5.

In this chapter, we will derive novel bounds on the discussed information-theoretic quantities for an

algorithm that learns linear threshold functions (LTFs) over the Boolean hypercube. The main idea is

that LTFs are uniquely characterized by n + 1 parameters known as the Chow parameters, and we can

easily estimate these parameters by computing a series of sample means. Our main result in this chapter

is Theorem 14 which bounds the expected generalisation error of this algorithm by O
(√

n logm
m

)
.

4.1 Boolean functions and their Fourier expansion

We now formalise the above discussions by introducing Boolean functions and some of their analysis.

Specifically, we introduce the Fourier expansion, an alternative way to represent Boolean functions.

The material in this section is taken from Chapter 1 of O’Donnell (2021) and summarised here for

completeness. The reader already familiar with the text may wish to skip to Section 4.2.

A Boolean function is a function f : {−1, 1}n → {−1, 1}. As an example, a Boolean function for

n = 2 could be the function defined by

f(+1,+1) = +1,

f(−1,+1) = +1,

f(+1,−1) = +1,

f(−1,−1) = −1,

37
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which simply takes the maximum of its two inputs. Interestingly, this function f has another represen-

tation:

f(x1, x2) =
1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2. (4.1)

It is easy to check that, when evaluated on inputs (x1, x2) ∈ {−1, 1}2, the two representations are

equivalent. Moreover, it can be shown that the above representation is unique.

The form in Equation 4.1 is known as a multilinear polynomial — when viewed as a function of any

single variable xi alone and treating all other variables as constants, the expression becomes linear.

Perhaps surprisingly, any Boolean function f : {−1, 1}n → {−1, 1} can be uniquely expressed as a

multilinear polynomial over n variables.

To see why, we need to consider a more general class of functions, the real-valued Boolean functions

f : {−1, 1}n → R. The set of all such functions forms a vector space V over R with dimension

dimV = 2n. Informally, this is because we may treat each function f as a 2n-dimensional “vector”,

where each component of the vector corresponds to what f evaluates to for a particular input; adding

two vectors together corresponds to adding the two corresponding functions together, and multiplying a

vector by a scalar corresponds to multiplying the corresponding function by a scalar.

Notice that for any fixed a = (a1, · · · , an) ∈ {−1, 1}n the polynomial

1a(x) :=
n∏
i=1

1

2
(1 + aixi) (4.2)

is an indicator function that outputs 1 when x = a and 0 otherwise. Hence f can be written as

f(x) =
∑

a∈{−1,1}n
f(a)1a(x) (4.3)

=
∑

a∈{−1,1}n

1

2n
f(a)

n∏
i=1

(1 + aixi) (4.4)

=
∑

a∈{−1,1}n

1

2n
f(a)

∑
S⊆[n]

∏
i∈S

aixi (4.5)

=
∑
S⊆[n]

∑
a∈{−1,1}n

1

2n
f(a)

∏
i∈S

ai
∏
i∈S

xi (4.6)

=
∑
S⊆[n]

 ∑
a∈{−1,1}n

1

2n
f(a)χS(a)

χS(x) (4.7)
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where

χS(x) :=
∏
i∈S

xi (4.8)

is the parity function of the bits (xi)i∈S and a multilinear polynomial. Equation 4.7 is a linear com-

bination of multilinear polynomials which is itself a multilinear polynomial, hence showing that any

f : {−1, 1}n → R can be expressed as a multilinear polynomial. Moreover, (χS)S⊆[n] must form a

basis for V because Equation 4.7 shows that every f can be expressed as a linear combination of χS of

which there are 2n many, and dimV = 2n. Consequently this shows that the coefficient in front of χS

is unique, and hence the multilinear polynomial representation of f is unique.

This unique multilinear polynomial representation of f has a name: the “Fourier expansion” of f , and

the coefficients in front of χS are the “Fourier coefficients” of f , denoted f̂(S). Hence we have proved

the following.

THEOREM 12. Every function f : {−1, 1}n → R has unique Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S)χS(x) (4.9)

where the Fourier coefficients are

f̂(S) =
∑

x∈{−1,1}n

1

2n
f(x)χS(x) = E

X∼{−1,1}n
[f(X)χS(X)] . (4.10)

The notation X ∼ {−1, 1}n means that X is distributed uniformly over the set {−1, 1}n. Equivalently,

X is a vector of n independent Rademacher ±1 random variables.

In particular, this shows that Boolean functions f : {−1, 1}n → {−1, 1}, a special case of real-valued

Boolean functions, have unique Fourier expansion. Crucially, this means we can characterise them using

their Fourier coefficients f̂(S), instead of the more traditional characterisation using their truth tables,

i.e., a list of the values f(x) for all possible x ∈ {−1, 1}n.

At first glance, this seems a bit pointless, as there are 2n many Fourier coefficients f̂(S), one for each

subset S ⊆ [n], which is just as many values as we would need to list out in the truth table representation

of f . However, for certain classes of Boolean functions, namely linear threshold functions and more

generally polynomial threshold functions, such functions are entirely determined by only a very small

number of Fourier coefficients; hence to learn such functions, it suffices to only learn those particular

Fourier coefficients. We will explore this idea in the current chapter.
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For other classes of Boolean functions, it can also be shown that most of the large Fourier coefficients

are concentrated on a small number of subsets, and learning only those Fourier coefficients allows us to

learn the function to sufficiently high accuracy. We will explore this idea in Chapter 5.

4.2 Linear threshold functions and the Chow parameters

A linear threshold function is any Boolean function which can be represented as a linear function x 7→

w0 + wTx, then taking the sign of the output.

DEFINITION 16. A linear threshold function (LTF) is a Boolean function f : {−1, 1}n → {−1, 1} such

that

f(x) = sgn(w0 + w1x1 + · · ·+ wnxn), (4.11)

for w0, · · · , wn ∈ R.

As alluded to above, LTFs are special in that they are entirely determined by only a small number of

Fourier coefficients, namely those f̂(S) such that |S| ≤ 1. This result is known as Chow’s theorem,

which was proved independently by Chow (1961) and Tannenbaum (1961).

THEOREM 13 (Chow’s theorem (Chow, 1961; Tannenbaum, 1961; O’Donnell, 2021)). Suppose f, g :

{−1, 1}n → {−1, 1} are two LTFs. If f̂(S) = ĝ(S) for all |S| ≤ 1 then f = g.

We will prove this theorem in Section 4.5. In light of this result, we can learn LTFs by only learning

f̂(∅), f̂({1}), · · · , f̂({n}), which we will abuse notation slightly and write as f̂(0), f̂(1), · · · , f̂(n)

respectively. These are often referred to as the “Chow parameters” of f . How can the Chow parameters

be learnt?

Suppose we have m i.i.d. samples X(1), · · · , X(m), each drawn uniformly from {−1, 1}n, and their as-

sociated labels Y (1), · · · , Y (m). Since f̂(S) = E[f(X)χS(X)], we in particular have f̂(∅) = E[f(X)]

and f̂(j) = E[f(X)Xj ] for j ∈ {1, · · · , n}. We can approximate these quantities via the sample mean

µ̂0 :=
1

m

m∑
i=1

Y (i), (4.12)

µ̂j :=
1

m

m∑
i=1

Y (i)X
(i)
j , j ∈ {1, · · · , n}. (4.13)
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By the weak law of large numbers (Theorem 30), these estimates converge in probability to their ex-

pected value as m→∞ which are precisely the Chow parameters. In other words we have

µ̂j
P−→ f̂(j), j ∈ {0, · · · , n}. (4.14)

Of course, for any finite m, the estimates are not in general exactly equal to the Chow parameters, so

Chow’s theorem does not apply to the estimated Chow parameters and the corresponding function with

those Fourier coefficients is not necessarily a linear threshold function. Furthermore, because Chow’s

theorem does not apply, there is no guarantee that the function with such Fourier coefficients is unique,

as only n+ 1 out of the 2n Fourier coefficients are specified. What is more, this function may not even

output values in {−1, 1}, but instead output values in R.

Fortunately, we will see in Section 4.6 that there is an algorithm that, given approximate Chow parame-

ters, can construct an LTF that is close to the true LTF, provided the Chow parameters can be estimated

to sufficiently high accuracy as will be the case for large enough m.

4.3 Mutual information bound

We will now turn to our information-theoretic framework to derive generalisation bounds for our algo-

rithm that learns an LTF through approximating the Chow parameters. Formally, our algorithm takes as

input Z = ((X(1), Y (1)), · · · , (X(m), Y (m))) as described above and computes µ̂ := (µ̂0, · · · , µ̂n) as

in Equation 4.12 and Equation 4.13. This is then fed into a “black box” A(µ̂), which we will discuss in

Section 4.6, that outputs an LTF corresponding to the approximate Chow parameters µ̂.

Our main result of this chapter, stated below, is a bound on the expected generalisation error of this

algorithm.

THEOREM 14 (Our result). The Chow parameter LTF learner A described above has expected gener-

alisation error ∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤ O

(√
n logm

m

)
. (4.15)

This result is derived by using the mutual information framework described in Section 3.2 and bounding

the quantity I(Z;A(µ̂(Z))). We will now go through the details of proving this statement.
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First, note that by the data processing inequality (Theorem 7), we have

I(Z;A(µ̂(Z))) ≤ I(Z; µ̂(Z)). (4.16)

But since the feature space X = {−1, 1}n is discrete and the learning algorithm µ̂ deterministic, we

have

I(Z; µ̂(Z)) = H(µ̂), (4.17)

by the arguments made in Equation 3.64.

This can be further simplified since

H(µ̂) ≤
n∑
j=0

H(µ̂j) (4.18)

=
n∑
j=0

H(mµ̂j) (4.19)

by Lemma 5 and Lemma 2 respectively. Note that mµ̂j are binomial random variables with m trials

and success probability equal to P
X∼{−1,1}n

[f(X) = 1] for j = 0 and P
X∼{−1,1}n

[f(X)Xj = 1] for

j ∈ {1, · · · , n}.

Unfortunately, there is no exact form for the entropy of a binomial random variable. One way to get

around this issue is to settle for approximations or asymptotic analyses of the entropy instead. A very

natural idea then is to note that by the central limit theorem (Theorem 31), binomial random variables

(appropriately scaled) converge in distribution to a normal distribution as m → ∞. This leads us

to suspect that there might be some relationship between the differential entropy of a normal random

variable and the Shannon entropy of a binomial random variable, at least asymptotically.

In the continuous case, we will show later on (see Theorem 27) that the differential entropy of any

continuous random variable is upper bounded by that of a normal having the same variance. We will

now show that an analogous result is also true in the discrete case.

The following is an argument by Massey (1988). Let X be a discrete random variable taking integer

values (e.g. a binomial random variable) and let p(k) := P[X = k]. Define the continuous random

variable X̃ as the random variable having density f
X̃

(x) = p(k) whenever x ∈ (k− 1
2 , k+ 1

2 ] for every

k ∈ Z. Clearly h(X̃) = H(X) by definitions of differential and Shannon entropy. However, note that

since X̃ is now continuous, we can bound h(X̃) using Theorem 27, which then gives us a bound on
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H(X) as well. To do so, we need to compute the variance of X̃ , which we will do by computing its first

and second moments. The first moment is

E[X̃] =

∫
R
xfX′(x) dx (4.20)

=
∑
k∈Z

∫ k+ 1
2

k− 1
2

xp(k)dx (4.21)

=
∑
k∈Z

p(k)
1

2

[(
k +

1

2

)2

−
(
k − 1

2

)2
]

(4.22)

=
∑
k∈Z

p(k)
1

2
[2k] (4.23)

= E[X]. (4.24)

Similarly, the second moment is

E[X̃2] =
∑
k∈Z

∫ k+ 1
2

k− 1
2

x2p(k)dx (4.25)

=
∑
k∈Z

p(k)
1

3

[(
k +

1

2

)3

−
(
k − 1

2

)3
]

(4.26)

=
∑
k∈Z

p(k)
1

3

[
3k2 +

1

4

]
(4.27)

= E[X2] +
1

12
. (4.28)

Hence,

Var[X̃] = E[X2] +
1

12
−E[X]2 = Var[X] +

1

12
. (4.29)

The significance of the 1
12 term is that it is the variance of a uniform distribution over an interval of size

1. In fact, we can derive the above result in a different way that more clearly demonstrates this idea.

Notice that the distribution of X̃ can be written as U((X − 1
2 , X + 1

2 ]). In particular, this implies

E[X̃ | X] = X. (4.30)

Then by the law of total expectation,

E[X̃] = E[E[X̃ | X]] = E[X], (4.31)
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but also, by the law of total variance,

Var [X̃] = E[Var [X̃ | X]] + Var [E[X̃ | X]] (4.32)

= E

[
1

12

]
+ Var [X] (4.33)

where the first term comes from the fact that X̃ | X is uniform on an interval of length 1.

Finally, we can apply Theorem 27 to bound the differential entropy of X̃ , giving us the following result.

THEOREM 15. Let X be a integer-valued discrete random variable with variance σ2. Then

H(X) <
1

2
ln

(
2πe

(
σ2 +

1

12

))
. (4.34)

Moreover, if X ∼ Binomial(m, p) then Var[X] = mp(1− p) ≤ m/4 and so

H(X) <
1

2
ln

(
2πe

(
m

4
+

1

12

))
. (4.35)

Applying this to our original problem of the Chow estimates, we obtain

I(Z; µ̂(Z)) =

n∑
j=0

H(mµ̂j) <
n+ 1

2
ln

(
2πe

(
m

4
+

1

12

))
(4.36)

= O (n logm) . (4.37)

Combining this with Equation 4.16 and Theorem 9, gives us the desired result of Theorem 14.

4.4 Conditional mutual information bound

In this section we explore if we can get a better bound by using the conditional mutual information

framework (Steinke and Zakynthinou, 2020) discussed in Section 3.4.
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We have,

I
(
S; µ̂(Z̃S) | Z̃

)
:= E

z̃∼D⊗2m

[
I(S|Z̃ = z̃; µ̂(Z̃S)|Z̃ = z̃)

]
(4.38)

= E
z̃∼D⊗2m

[I(S; µ̂(z̃S))] (4.39)

= E
z̃∼D⊗2m

[H(µ̂(z̃S))−H(µ̂(z̃S)|S)] (4.40)

= E
z̃∼D⊗2m

[
H(µ̂(z̃S))− E

s∼{−1,1}n
[H(µ̂(z̃S)|S = s)]

]
(4.41)

= E
z̃∼D⊗2m

[H(µ̂(z̃S))− 0] (4.42)

≤
n∑
j=0

E
z̃∼D⊗2m

[H(µ̂j(z̃S))] (4.43)

=

n∑
j=0

E
z̃∼D⊗2m

[H(mµ̂j(z̃S))] . (4.44)

where Equation 4.40 is by Lemma 6, Equation 4.42 is because µ̂ is deterministic, Equation 4.43 is by

Lemma 5, and Equation 4.44 is by Lemma 2.

Let z̃ ∈ Z2×m be fixed and write

z̃ =

(x̃(0,1), ỹ(0,1)) · · · (x̃(0,m), ỹ(0,m))

(x̃(1,1), ỹ(1,1)) · · · (x̃(1,m), ỹ(1,m))

 (4.45)

so that mµ̂j(z̃S) can be expressed as

mµ̂j(z̃S) =
n∑
i=1

ỹ(Si,i)x̃
(Si,i)
j (4.46)

for j ∈ {1, · · · ,m} and similarly for the case j = 0. Now, for those i such that ỹ(0,i)x̃(0,i)j = ỹ(1,i)x̃
(1,i)
j ,

the random value of Si does not affect the corresponding summand. The randomness in S only affects i

for which ỹ(0,i)x̃(0,i)j 6= ỹ(1,i)x̃
(1,i)
j and so

mµ̂j(z̃S) ∼
∣∣∣{i ∈ [m] : ỹ(0,i)x̃

(0,i)
j = ỹ(1,i)x̃

(1,i)
j = 1

}∣∣∣
−
∣∣∣{i ∈ [m] : ỹ(0,i)x̃

(0,i)
j = ỹ(1,i)x̃

(1,i)
j = −1

}∣∣∣
+ Binomial

(∣∣∣{i ∈ [m] : ỹ(0,i)x̃
(0,i)
j 6= ỹ(1,i)x̃

(1,i)
j

}∣∣∣ , 1

2

)
. (4.47)



4.4 CONDITIONAL MUTUAL INFORMATION BOUND 46

The first two lines in the right hand side are constants, which does not affect the entropy of mµ̂j(z̃S).

By our work from the previous section (in particular Equation 4.35), we get

H (mµ̂j(z̃S)) <
1

2
ln

(
2πe

(
cj(z̃)

4
+

1

12

))
(4.48)

where we define

cj(z̃) :=
∣∣∣{i ∈ [m] : ỹ(0,i)x̃

(0,i)
j 6= ỹ(1,i)x̃

(1,i)
j

}∣∣∣ . (4.49)

Hence, from Equation 4.44,

I
(
S; µ̂(Z̃S) | Z̃

)
<
n+ 1

2
ln(2πe) +

1

2

n∑
j=0

E
z̃∼D⊗2m

[
ln

(
cj(z̃)

4
+

1

12

)]
. (4.50)

Then by Jensen’s inequality,

I
(
S; µ̂(Z̃S) | Z̃

)
<
n+ 1

2
ln(2πe) +

1

2

n∑
j=0

ln

(
E

z̃∼D⊗2m

[
cj(z̃)

4
+

1

12

])
. (4.51)

But since the samples in z̃ are i.i.d., we have

E
z̃∼D⊗2m

[cj(z̃)] = m P
x,x′∼{−1,1}n

[
f(x)xj 6= f(x′)x′j

]
=: mpfj (4.52)

where the probability is taken over two i.i.d. samples x and x′. Hence we get

I
(
S; µ̂(Z̃S) | Z̃

)
<
n+ 1

2
ln(2πe) +

1

2

n∑
j=0

ln

(
pfj
4
m+

1

12

)
. (4.53)

Using the very loose bound pfj ≤ 1 we get

I
(
S; µ̂(Z̃S) | Z̃

)
<
n+ 1

2
ln(2πe) +

1

2

n∑
j=0

ln

(
m

4
+

1

12

)
= O(n logm) (4.54)

which recovers the same (asymptotic) bound as we got using the mutual information based analysis in

the previous section, and hence resulting in the same (asymptotic) expected generalisation error bound

of O
(√

n logm
m

)
by Theorem 11.

However, Equation 4.53 allows us to perform a more fine-grained analysis that is based on the behaviour

of the particular function f . An interesting direction for further work could be to identify classes of LTFs

for which this analysis results in tighter bounds.
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4.5 Proof of Chow’s theorem

In this section, we will prove Chow’s theorem (Theorem 13), which is the key result in motivating this

line of work. Again, the material in this section is taken from O’Donnell (2021) and is summarised here

for completeness.

First, we introduce an inner product between pairs of functions.

DEFINITION 17. We define an inner product 〈·, ·〉 on pairs of functions f, g : {−1, 1}n → R by

〈f, g〉 :=
∑

x∈{−1,1}n

1

2n
f(x)g(x) = E

X∼{−1,1}n
[f(X)g(X)] . (4.55)

The inner product is defined in such a way because this results in the bases χS being orthonormal.

THEOREM 16. The 2n parity functions χS : {−1, 1}n → {−1, 1} form an orthonormal basis for V ,

i.e.,

〈χS , χT 〉 = 1 {S = T} (4.56)

PROOF. Suppose S 6= T . Letting S4T := (S \ T ) ∪ (T \ S) 6= ∅ denote the symmetric difference

between two sets, we have

χS(X)χT (X) =
∏
i∈S

Xi

∏
i∈T

Xi (4.57)

=
∏

i∈S∩T
X2
i

∏
i∈S4T

Xi (4.58)

=
∏

i∈S4T
Xi. (4.59)

Taking expectations we obtain

E[χS(x)χT (X)] = E

 ∏
i∈S4T

Xi

 (4.60)

=
∏

i∈S4T
E[Xi], (4.61)

where Equation 4.61 follows by independence of each Xi. Now, Xi are Rademacher ±1 random vari-

ables so E[Xi] = 0. Hence E[χS(X)χS(T )] = 0.

On the other hand, if S = T , then χS(X)χT (X) = 1 and so E[χS(X)χT (X)] = 1. �
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Having defined an inner product between two functions, we can define the norm of a function.

DEFINITION 18. The (L2) norm of a function f : {−1, 1}n → R is

‖f‖2 :=
√
〈f, f〉 =

√
E

X∼{−1,1}n
[f(X)2]. (4.62)

Note that for Boolean-valued functions f : {−1, 1}n → {−1, 1}we always have ‖f‖2 = 1 since f(X)2

is identically 1.

We can now prove Plancherel’s theorem, which expresses the inner product between two functions as

the sum of the product of the Fourier coefficients between the two functions.

THEOREM 17 (Plancherel’s theorem). For any f, g : {−1, 1}n → R,

〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S). (4.63)

PROOF.

〈f, g〉 = E[f(X)g(X)] (4.64)

= E

∑
S⊆[n]

f̂(S)χS(X)

∑
T⊆[n]

ĝ(T )χT (X)

 (4.65)

=
∑
S⊆[n]

∑
T⊆[n]

f̂(S)ĝ(T )E[χS(X)χT (X)] (4.66)

=
∑
S⊆[n]

∑
T⊆[n]

f̂(S)ĝ(T )1 {S = T} (4.67)

=
∑
S⊆[n]

f̂(S)ĝ(S) (4.68)

where Equation 4.65 is due to the Fourier expansion of f and g (Theorem 12), Equation 4.66 is due to

linearity of expectation, and Equation 4.67 is due to the orthonormality of χS (Theorem 16). �

By taking g = f in Plancherel’s theorem gives an expression for the norm of f . This result is called

Parseval’s theorem.

THEOREM 18 (Parseval’s theorem). For any f : {−1, 1}n → R,

‖f‖22 = E
X∼{−1,1}n

[
f(X)2

]
=
∑
S⊆[n]

f̂(S)2. (4.69)
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Note that for Boolean-valued functions f : {−1, 1}n → {−1, 1} we have ‖f‖2 = 1 and hence∑
S⊆[n]

f̂(S)2 = 1. (4.70)

We are now ready to prove Chow’s theorem (Theorem 13). Recall the statement says that if f, g :

{−1, 1}n → {−1, 1} are two LTFs with f̂(S) = ĝ(S) for all |S| ≤ 1 then f = g.

PROOF OF CHOW’S THEOREM. (O’Donnell, 2021) Since f is an LTF, then by definition we can

write f(x) = sgn(`(x)) where ` : {−1, 1}n → R is given by `(x) = w0 +w1x1 + · · ·+wnxn. Without

loss of generality, we may assume that ` is never 0 on {−1, 1}n because if it is, we can perturb it slightly

without changing the behaviour of f . For any x ∈ {−1, 1}n we have

f(x)`(x) = sgn(`(x))`(x) (4.71)

= |`(x)| (4.72)

≥ g(x)`(x) (4.73)

where the last inequality follows because g(x) ∈ {−1, 1}. Hence it follows that

E[f(X)`(X)] ≥ E[g(X)`(X)]. (4.74)

Applying Parseval’s theorem (Theorem 18) to both sides of the inequality implies that∑
S⊆[n]

f̂(S)̂̀(S) = E[f(X)`(X)] ≥ E[g(X)`(X)] =
∑
S⊆[n]

ĝ(S)̂̀(S). (4.75)

But by assumption, f̂(S) = ĝ(S) for |S| ≤ 1. On the other hand, because `(x) = w0 + w1x1 + · · · +

wnxn, we have ̂̀(S) = 0 for |S| > 1. Hence we must have equality in Equation 4.75, i.e.,

E[f(X)`(X)] = E[g(X)`(X)]. (4.76)

At the same time, we also know that f(x)`(x) ≥ g(x)`(x) from Equation 4.73, but because the expec-

tations are equal, we must have

f(x)`(x) = g(x)`(x) (4.77)

for all x ∈ {−1, 1}n. This then implies f(x) = g(x) for all x ∈ {−1, 1}n because we assumed `(x) is

never zero on {−1, 1}n. �
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4.6 From Chow estimates to an LTF

In Section 4.3 and Section 4.4, we successfully derived expected generalisation bounds for learning

LTFs via the Chow parameters. Our analysis was focused on the estimates of the Chow parameters from

the given samples, but we skimmed over the details of how to transform our Chow estimates into an

LTF. In this section, we go over these details.

Recall that the learnt Chow parameters µ̂ are only approximations of the true Chow parameters f̂ , and

so Chow’s theorem does not apply to µ̂. Moreover even if the theorem were to apply, the proof is

nonconstructive in the sense that it does not tell us how to construct the LTF from its Chow parameters,

which is what we would ultimately like to do.

Fortunately, the following result by O’Donnell and Servedio (2008) shows that given sufficiently accu-

rate estimates of the Chow parameters, one can indeed construct an LTF that is very close to the true

LTF, though this process is highly nontrivial.

THEOREM 19 (O’Donnell and Servedio (2008)). Let f : {−1, 1}n → {−1, 1} be an LTF and f̂ its Chow

parameters. There is a randomized algorithm A such that, when given approximate Chow parameters

µ̂ satisfying

‖µ̂− f̂‖2 ≤ 2−Õ(1/ε2), (4.78)

outputs the weights-based representation of a LTF h that with probability at least 1− δ′ overA satisfies

P
X∼{−1,1}n

[f(X) 6= h(X)] ≤ ε. (4.79)

and has time complexity

2
poly

(
2Õ(1/ε2)

)
n2 log n log

n

δ′
. (4.80)

To use this result, let us use enough samples for µ̂ so that Equation 4.78 is satisfied with failure prob-

ability no more than δ/2 and let us run A until its failure probability is no more than δ/2 as well (i.e.

δ′ = δ/2). By the union bound, this results in an algorithm that, with failure probability no more than δ,

outputs an LTF h with

P
X∼{−1,1}n

[f(X) 6= h(X)] ≤ ε. (4.81)

In other words, the process of computing the estimates µ̂ and applying Theorem 19 is a proper PAC

learner for LTFs in the realisable setting under the uniform Boolean hypercube, i.e.,DX = U ({−1, 1}n),
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though of course it is not an efficient one because the dependence on 1/ε is doubly exponential. How-

ever, we emphasise that for a fixed ε, the time complexity dependence on n is quadratic.

How many samples do we need to satisfy Equation 4.78 with failure probability no more than δ
2? For

each j ∈ {0, 1, · · · , n}, let us ensure µ̂j is within an additive (n+ 1)−1/22−Õ(1/ε2) to f̂(j) with failure

probability no greater than δ
2(n+1) . In other words,

P
[∣∣∣µ̂j − f̂(j)

∣∣∣ ≤ (n+ 1)−1/22−Õ(1/ε2)
]
≥ 1− δ

2(n+ 1)
. (4.82)

By Theorem 35 this can be done with no more than

m = O
(
n · 2Õ(1/ε2) · log

n

δ

)
(4.83)

samples.

The probability that all n+ 1 estimates are within the prescribed additive range is then

P

 n⋂
j=0

{∣∣∣µ̂j − f̂(j)
∣∣∣ ≤ (n+ 1)−1/22−Õ(1/ε2)

} (4.84)

= 1−P

 n⋃
j=0

{∣∣∣µ̂j − f̂(j)
∣∣∣ > (n+ 1)−1/22−Õ(1/ε2)

} (4.85)

≥ 1−
n∑
j=0

P
[∣∣∣µ̂j − f̂(j)

∣∣∣ > (n+ 1)−1/22−Õ(1/ε2)
]

(4.86)

≥ 1− (n+ 1) · δ

2(n+ 1)
(4.87)

= 1− δ

2
. (4.88)

But if ∣∣∣µ̂j − f̂(j)
∣∣∣ ≤ (n+ 1)−1/22−Õ(1/ε2) (4.89)

for all j ∈ {0, · · · , n} then this implies

n∑
j=0

(
µ̂j − f̂(j)

)2
≤ 2−Õ(1/ε2) (4.90)

and so

‖µ̂− f‖2 ≤ 2−Õ(1/ε2) (4.91)

as required.
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From Equation 4.83, we see the sample complexity dependence is exponential in 1/ε, but we emphasize

that the dependence on n is near-linear.

4.7 Extension to polynomial threshold functions

The ideas in this chapter can be trivially generalised to polynomial threshold functions (PTFs). A

Boolean-valued function f is a PTF of degree at most k if it is expressible as

f(x) = sgn(p(x)) (4.92)

for some real polynomial p(x) of degree at most k.

Chow’s theorem can be generalised to PTFs, with the main ideas in the proof staying the same.

THEOREM 20 (O’Donnell (2021)). Let f, g : {−1, 1}n → {−1, 1} be PTFs of degree at most k.

Suppose that f̂(S) = ĝ(S) for all |S| ≤ k. Then f = g.

Just like we did for the case of LTFs, we can estimate the Fourier coefficients µ̂(S) for |S| ≤ k. A result

by Diakonikolas and Kane (2019) generalises Theorem 19 to the case of PTFs. Specifically, it states

there is an algorithm that can approximately reconstruct f from µ̂(S) provided the Fourier estimates

µ̂(S) are close enough to f̂(S).

Already for the case of LTFs we saw that the distance requirement ‖µ̂− f̂‖2 is inversely exponential in

1/ε. It should be no surprise then that for the general case of PTFs, this distance requirement becomes

staggeringly small and turns out to be inversely proportional to the Ackermann function (Diakonikolas

and Kane, 2019).

However, from our information-theoretic framework, the analysis remains the same as before except

we estimate O(nk) Fourier coefficients instead of n + 1. Thus the algorithm that estimates the Fourier

coefficients and reconstructs the PTF has expected generalisation error∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤ O

(√
nk logm

m

)
. (4.93)



CHAPTER 5

Applications to the LMN algorithm

In the previous chapter we saw that we could learn LTFs over the Boolean hypercube via estimating

the Chow parameters. Using the information theory toolkit developed in Chapter 3, we showed that

the expected generalisation error
∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))

]∣∣∣∣ is bounded by O
(√

n logm
m

)
, how-

ever learning to population risk R(A(Z)) < ε had sample complexity m exponential in 1/ε and time

complexity doubly exponential in 1/ε.

In this short chapter, we will show that our analysis can be applied to a well known learning algorithm

by Linial et al. (1993). The high level idea of their algorithm is to estimate the Fourier coefficients of

functions for which the large coefficients are provably located on a small number of subsets. Our main

result in this chapter is Theorem 22.

5.1 LMN algorithm

To study this idea in more detail, recall that by Parseval’s theorem (Theorem 18),∑
S⊆[n]

f̂(S)2 = 1 (5.1)

for any Boolean-valued f : {−1, 1}n → {−1, 1}.

The squared Fourier coefficients f̂(S)2 are called the Fourier weights. Suppose that the Fourier weights

are concentrated on a small number of subsets F , as formalized by the following definition.

DEFINITION 19. Let F be a collection of subsets of [n]. We say the Fourier weights of f : {−1, 1}n →

{−1, 1} are ε-concentrated on F if ∑
S⊆[n],S 6∈F

f̂(S)2 ≤ ε. (5.2)

53
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We know that f has Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S)χS(x). (5.3)

A simple idea by Linial, Mansour, and Nisan (1993) to learn f is the following. We can estimate the

Fourier coefficients f̂(S) for S ∈ F like we did for estimating the Chow parameters. Let µ̂(S) denote

these estimates. Since the Fourier weight of f is ε concentrated on F , we know that f̂(S) for S 6∈ F

is close to zero, so let us use the approximation µ̂(S) := 0 for S 6∈ F . We can then construct an

approximate Fourier expansion of f given by

g(x) :=
∑
S∈F

µ̂(S)χS(x) +
∑
S 6∈F

0 · χS(x). (5.4)

The function g does not necessarily output values in {−1, 1} so let us take the sign of g instead. These

steps are summarized in Algorithm 1.

Algorithm 1 LMN Algorithm (Linial, Mansour, and Nisan, 1993)
1: Estimate the Fourier coefficients for each S ∈ F , i.e., compute the sample means

µ̂(S) :=
1

m

m∑
i=1

f(X(i))χS(X(i)) =
1

m

m∑
i=1

Y (i)
∏
j∈S

X
(i)
j . (5.5)

2: Form the function g : {−1, 1}n → R given by

g(x) :=
∑
S∈F

µ̂(S)χS(x). (5.6)

3: Output
h(x) := sgn(g(x)). (5.7)

It turns out that this algorithm is a PAC learner for f , provided we can find such a set F .

THEOREM 21 (Linial et al. (1993); O’Donnell (2021)). Suppose f : {−1, 1}n → {−1, 1} is ε/2 con-

centrated on F . Then, Algorithm 1, when given

m ≥ O
(
|F|
ε

log
|F|
δ

)
(5.8)

i.i.d. samples over {−1, 1}n labelled by f , outputs a function h that with probability at least 1 − δ

satisfies

P[f(X) 6= h(X)] ≤ ε. (5.9)
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In other words, the LMN algorithm is a proper PAC learner in the realisable setting under the uniform

Boolean hypercube, i.e., DX = U ({−1, 1}n).

We will prove this result in Section 5.3.

For now, notice that the Fourier coefficients are approximated in the exact same way as we did for the

Chow coefficients, except that we do this more generally for sets in F rather than only for those sets

S with |S| ≤ 1. However, the key difference to the LTF case is that although the degree 0 and degree

1 Fourier coefficients uniquely determine an LTF, those sets are not an ε-concentration for the Fourier

weights. Hence computing g(x) and h(x) as do we here would not be a good approximation for an LTF,

and indeed recovering the LTF from the Chow parameters is a lot more difficult as we saw in Section 4.6.

From the perspective of our information-theoretic framework however, the analysis of the LMN algo-

rithm is almost identical to Section 4.3 except that we have |F| estimates instead of n+ 1 and hence

I(Z; µ̂(Z)) ≤
∑
S∈F

H(mµ̂(S)) (5.10)

<
|F|
2

ln

(
2πe

(
m

4
+

1

12

))
(5.11)

= O(|F| logm). (5.12)

Let A(µ̂(Z)) denote the entire LMN algorithm. Again by the data processing inequality

I(Z;A(µ̂(Z))) ≤ I(Z; µ̂(Z)) (5.13)

and so by Theorem 9 we arrive at the following result.

THEOREM 22 (Our result). The LMN algorithm A has expected generalisation error∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ = O

(√
|F| logm

m

)
(5.14)

where F are the subsets for which the Fourier weights are ε-concentrated on.

5.2 Functions with concentrated Fourier weights

In the previous section we saw that if we could identify sets F for which the Fourier weights of f are

ε/2 concentrated in, then this could be used in a learning algorithm for f that had sample complexity
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dependence O
(
|F|
ε log |F|δ

)
and expected generalisation error O

(√
|F| logm

m

)
. This is great news if

we could somehow find such a set F . In this section, we summarize some material from O’Donnell

(2021) stating that for various classes of functions, F consists of all sets with low cardinality, i.e.,

F = {S ⊆ [n] : |S| ≤ k} for some k, and hence |F| = O(nk). These results then allow us to very

easily bound the expected generalisation error of the LMN algorithm for these classes of functions via

Equation 5.14.

5.2.1 Functions with low influence

The influence of coordinate i on a Boolean-valued function f : {−1, 1}n → {−1, 1} is the probability

that changing the ith bit changes the output of the function,

Infi[f ] := P
X∼{−1,1}n

[
f(X) 6= f(X⊕i)

]
(5.15)

where X⊕i means X but with the ith bit flipped.

The total influence of f : {−1, 1}n → {−1, 1} is the sum of all its influences

I[f ] :=
n∑
i=1

Infi[f ]. (5.16)

The following lemma relates the influence of a function f to the size of the sets that f is ε concentrated

on.

LEMMA 10. For any f : {−1, 1}n → {−1, 1} and any ε > 0, the Fourier weights of f are ε concen-

trated on sets with cardinality up to I[f ]/ε.

Consider the concept class C of Boolean functions with I[f ] ≤ t. By the above result, every function

in C has its Fourier weights ε/2 concentrated on sets with cardinality up to k = 2t/ε. Hence the LMN

algorithm can be used to learn C by settingF := {S ⊆ [n] : |S| ≤ 2t
ε }. This achieves sample complexity

m =
nO(t/ε)

ε
log

nO(t/ε)

δ
, (5.17)

and expected generalisation error √
nO(t/ε) logm

m
. (5.18)
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Notice that the expected generalisation error here is dependent on ε. This is because, in order to learn

to smaller ε, we need to set F to contain sets with larger cardinality — in particular the maximum

cardinality of sets in F scales with 1/ε. Hence |F| is a function of ε and so the expected generalisation

error is also a function of ε.

5.2.2 Monotone functions

An important class of functions with low influence are the class of monotone functions. Such functions

are quite common and natural, and in particular encompass most “reasonable” voting rules, i.e., where

switching votes from one candidate to the other cannot cause the second to lose the election.

DEFINITION 20. A function f : {−1, 1}n → {−1, 1} is monotone if f(x) ≤ f(y) whenever x ≤ y

coordinate-wise.

LEMMA 11. For monotone f ,

I[f ] ≤
√

2

π
n1/2 +O(n−1/2) (5.19)

with equality if f is the majority function over n elements.

Consequently, by Lemma 10, monotone functions have Fourier weights ε/2 concentrated on sets up to

degree
2

ε

(√
2

π
n1/2 +O(n−1/2)

)
= O

(√
n

ε

)
. (5.20)

Hence the LMN algorithm, when learning monotone functions, has sample complexity

nO(
√
n/ε)

ε
log

nO(
√
n/ε)

δ
(5.21)

and expected generalisation error no more than√
nO(
√
n/ε) logm

m
. (5.22)

5.2.3 Functions with low noise sensitivity

Another technique to show Fourier weight concentration is to look at the sensitivity of a function to noise

in its input.
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DEFINITION 21. For f : {−1, 1}n → {−1, 1}, the noise sensitivity of f at γ, denoted NSγ [f ] is

the probability that f(X) 6= f(Y ) when X ∼ {−1, 1}n and Y is formed by flipping each bit in X

independently with probability γ.

The following lemma relates a function’s noise sensitivity to the size of the subsets that its Fourier

weights are concentrated on.

LEMMA 12. The Fourier weights of f : {−1, 1}n → {−1, 1} are 3NSγ [f ] concentrated on sets with

cardinality at most 1/γ.

Using this result, we can learn functions with low noise sensitivity. Consider the concept class C of

Boolean functions f having NSγ [f ] ≤ ε/6. Then f is 3NSγ [f ] ≤ ε/2 concentrated on sets with

cardinality at most 1/γ and so the LMN algorithm when used to learn C has sample complexity

O

(
n1/γ

ε
log

n1/γ

δ

)
, (5.23)

and by our result, has expected generalisation error no more than

O

(√
n1/γ logm

m

)
. (5.24)

5.2.4 Peres’ theorem and LTFs revisited

A result by Peres (2021) bounds the noise stability of LTFs and hence by the previous result we can

learn LTFs via the LMN algorithm.

THEOREM 23 (Peres (2021)). Let f : {−1, 1}n → {−1, 1} be an LTF. Then

NSγ [f ] ≤ O(
√
γ). (5.25)

By Lemma 12, this implies that LTFs have their Fourier weights ε/2 concentrated on sets up to degree

O(1/ε2) and so learning LTFs via this approach yields a sample complexity of

m =
nO(1/ε2)

ε
log

nO(1/ε2)

δ
(5.26)
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and an expected generalisation error of √
nO(1/ε2) logm

m
. (5.27)

Unfortunately, this is not any better than the approach discussed in Chapter 4 where we learnt LTFs via

the Chow parameters.

However, the noise sensitivity approach is much more flexible as it allows us to handle compositions of

elementary functions such as LTFs. For example, consider the concept class C consisting of functions

of the form h = g(f1, · · · , fs) where f1, · · · , fs : {−1, 1}n → {−1, 1} are LTFs. Peres’ theorem can

be used to show that NSγ [h] ≤ O(s
√
γ). Hence C can be learnt via the LMN algorithm using

m =
nO(s2/ε2)

ε
log

nO(s2/ε2)

δ
(5.28)

samples. This is the only known way of showing that a conjunction of two LTFs is learnable to constant

error ε in time poly(n) (O’Donnell, 2021).

Our information-theoretic analysis complements this result by showing that this algorithm has expected

generalisation error no more than √
nO(s2/ε2) logm

m
. (5.29)

5.2.5 Functions with constant Fourier degree

As our last example, we study functions f(x) whose Fourier expansion
∑

S⊆[n] f̂(S)χS(x) has (poly-

nomial) degree at most k, which is equivalent to requiring that f̂(S) = 0 for |S| > k. For example, it

can be shown that decision trees of depth at most k satisfy this condition.

Such functions satisfy the property that each f̂(S) is an integer multiple of 21−k. Consequently, if for

each S with |S| ≤ k, we learn f̂(S) to within 2−k then we can round our estimate to the nearest multiple

of 21−k and return a hypothesis that has zero error. By Hoeffding’s inequality (Theorem 35), this can be

done with failure probability no more than δ using

m = O

(
22k log

2k

δ

)
(5.30)
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samples. The expected generalisation error is then no more than

O

(√
2k logm

m

)
. (5.31)

To the best of our knowledge, this bound does not appear in the literature, and the ease with which we

were able to obtain it demonstrates the versatility of our result.

5.3 Sample complexity of the LMN algorithm

We end this chapter by proving that the sample complexity of the LMN algorithm is O
(
|F|
ε log |F|δ

)
as

stated in Theorem 21. The material in this section is taken from O’Donnell (2021) and we summarize it

here for completeness.

PROOF OF THEOREM 21. We start the proof similarly to our analysis in Section 4.6, except that

we want µ̂S to be within an additive 1
2

√
ε
|F| of f̂S with failure probability no greater than δ

|F| for each

S ∈ F . Again, by Theorem 35, this can be achieved using the number of samples given in Equation 5.8.

Using the same union bound argument as in Section 4.6, this implies that

P

[ ⋂
S∈F

{∣∣∣µ̂S − f̂S∣∣∣ ≤ 1

2

√
ε

|F|

}]
≥ 1− δ. (5.32)

Recall that the LMN algorithm computes g(x) =
∑

S∈F µ̂(S)χS(x). By Parseval’s theorem (Theo-

rem 18),

‖f − g‖22 =
∑
S⊆[n]

f̂ − g(S)2 (5.33)

=
∑
S∈F

(
f̂(S)− µ̂(S)

)2
+
∑
S 6∈F

(
f̂(S)− 0

)2
. (5.34)

By assumption, the Fourier weights of f are ε/2 concentrated on F , so by definition
∑

S 6∈F f̂(S)2 ≤

ε/2. Furthermore, by Equation 5.32, with probability at least 1 − δ we have
(
f̂(S)− µ̂(S)

)2
≤ ε

4|F|

for all S ∈ F hence
∑

S∈F

(
f̂(S)− µ̂(S)

)2
≤ ε

4 . Thus,

‖f − g‖22 <
ε

4
+
ε

2
< ε (5.35)

with probability at least 1− δ.
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Finally, recall that the LMN algoritihm outputs h(x) := sgn(g(x)). Now,

P[f(X) 6= h(X)] = E [1 {f(X) 6= sgn(g(X))}] . (5.36)

Note that if f(X) 6= sgn(g(X)) then either f(X) = 1 and g(X) < 0, or f(X) = −1 and g(X) ≥ 0. In

either case, |f(X)− g(X)| ≥ 1 which implies

(f(X)− g(X))2 ≥ 1 = 1 {f(X) 6= sgn(g(X))} . (5.37)

Otherwise if f(X) = sgn(g(X)) then clearly

(f(X)− g(X))2 ≥ 0 = 1 {f(X) 6= sgn(g(X))} . (5.38)

Hence for all X , we have the inequality

1 {f(X) 6= sgn(g(X))} ≤ (f(X)− g(X))2 (5.39)

and so,

E [1 {f(X) 6= sgn(g(X))}] ≤ E
[
(f(X)− g(X))2

]
(5.40)

= ‖f − g‖22. (5.41)

But we know from Equation 5.35 that ‖f − g‖22 < ε with probability at least 1 − δ, completing the

proof. �



CHAPTER 6

Extension to learning LTFs over Rn

In Chapter 4 we have seen that LTFs f : {−1, 1}n → {−1, 1} are characterised by their degree 0

and 1 Fourier coefficients which we can easily learn to get an approximation of f . In this chapter, we

generalise this idea to real-valued LTFs instead, i.e., functions of the form

f : Rn → {−1, 1}

x 7→ sgn(w0 + w1x1 + · · ·+ wnxn). (6.1)

It turns out that many of the properties from the discrete case have analogues in this setting, if we

assume that the distribution over X is the n-dimensional standard normal density instead of the uniform

distribution over {−1, 1}n.

In particular, LTFs in this setting are again characterised by their degree 0 and degree 1 Hermite coeffi-

cients, the Gaussian analogue of Fourier coefficients. We again analyse a learning algorithm that learns

LTFs by approximating their Hermite coefficients then reconstructing the LTF. Our main result in this

chapter is Theorem 25, which states that this algorithm has an expected generalisation error ofO
(√

n
m

)
.

We also prove a secondary result, Theorem 29, which shows that reconstructing the LTF from Hermite

estimates is much easier in this setting.

6.1 L2 integrable functions and Hermite analysis

Instead of analysing functions of the form f : {−1, 1}n → R as we did in Chapter 4, we will now

analyse functions of the form f : Rn → R that are L2 integrable under the n-dimensional standard

Gaussian density ϕn, i.e., the set of functions in the function space

L2(Rn, ϕn) :=

{
f : Rn → R |

∫
Rn

[f(x)]2 ϕn(x)dx <∞
}
. (6.2)

62
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Many of the properties in the discrete uniform case continue to hold in this setting, which we summarise

in this section. The results in this section are taken from O’Donnell (2021).

We define an analogous inner product between two functions in this space,

〈f, g〉 := E
X∼N (0,1)⊗n

[f(X)g(X)] =

∫
Rn
f(x)g(x)ϕn(x)dx. (6.3)

In the discrete case, we saw that the parity functions χS(x) :=
∏
i∈S xi, which are just products of linear

polynomials xi for i ∈ [n], formed an orthonormal basis over the set of functions f : {−1, 1}n → R. In

the Gaussian setting, it turns out that products of a certain class of polynomials known as the Hermite

polynomials form an orthonormal basis for L2(Rn, ϕn).

DEFINITION 22 (Hermite polynomials). The Hermite polynomials are the univariate polynomials de-

fined as

hn(x) := (−1)n exp

(
1

2
x2
)
dn

dxn

[
exp

(
−1

2
x2
)]

(6.4)

for n ∈ N≥0.

Some low order Hermite polynomials are

h0(x) = 1, (6.5)

h1(x) = x, (6.6)

h2(x) = x2 − 1, (6.7)

h3(x) = x3 − 3x. (6.8)

It can be shown that products of these polynomials form an orthonormal basis for L2(Rn, ϕn).

THEOREM 24. The family of multivariate polynomials

HS(x) :=

n∏
i=1

hSi(xi) (6.9)

for S ∈ Nn≥0 forms an orthonormal basis for L2(Rn, ϕn) under the inner product defined in Equa-

tion 6.3.

Moreover, as in the Boolean-valued case, any function f ∈ L2(Rn, ϕn) can be written uniquely as

f(x) =
∑
S∈Nn

f̂(S)HS(x) (6.10)
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where

f̂(S) := 〈f,HS〉 =

∫
Rn
f(x)HS(x)ϕn(x)dx = E

X∼N (0,1)⊗n
[f(X)HS(X)] (6.11)

is the Hermite coefficient of f relative to S.

6.2 Hermite analysis of LTFs

We continue to analyse LTFs in this setting, but for simplicity we restrict ourselves to only origin-centred

LTFs, i.e., LTFs of the form

f(x) = sgn(wTx) = sgn(w1x1 + · · ·+ wnxn), (6.12)

with constant coefficient w0 equal to zero. Without loss of generality, we assume ‖w‖2 = 1. Our ideas

will also work for the non origin-centred case, but the analysis becomes a bit more involved.

The Hermite coefficient relative to the zero vector is, by definition,

H0 = E[f(X)] (6.13)

= E[sgn(wTX)]. (6.14)

Because X is n-dimensional standard normal, each component Xi is standard normal and so wTX ∼

N (0, 1) because ‖w‖2 = 1. Hence sgn(wTX) is 1 with probability 1/2 and −1 with probability 1/2

and so H0 = 0.

The Hermite coefficient relative to the standard unit vectors ei (the vector having 1 in component i and

0s elsewhere) are

Hei = E[f(X)Xi] (6.15)

= E[sgn(wTX)Xi]. (6.16)

Now wTX and Xi are jointly bivariate normal, and have covariance

Cov[wTX,Xi] = E[(wTX)Xi]−E[wTX]E[Xi] (6.17)

= wiE[X2
i ] +

∑
j 6=i

wjE[XjXi]− 0 (6.18)

= wi (6.19)
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where the last inequality is because X2
i is chi squared with one degree of freedom, which has mean one,

and because Xi and Xj are independent which implies E[XiXj ] = E[Xi]E[Xj ] = 0.

Consequently, (wTX,Xi) has the same distribution as
(
U,wiU +

√
1− w2

i V
)

where U, V are inde-

pendent standard normal. Hence,

E[sgn(wTX)Xi] = E

[
sgn(U)

(
wiU +

√
1− w2

i V

)]
(6.20)

= wiE[|U |] +
√

1− w2
iE[sgn(U)]E[V ] (6.21)

=

√
2

π
wi + 0. (6.22)

In other words the Hermite coefficients Hei are just a rescaling of the weights wi by
√

2
π . Hence, just

like Chow’s theorem in the discrete case, here the Hermite coefficients Hei also uniquely determine the

LTF. Moreover it is trivial to reconstruct the LTF given Hei , which is very much different to the discrete

case, and in this sense the Gaussian setting is much easier to deal with compared to the discrete setting.

Given m samples (X(1), Y (1)), · · · , (X(m), Y (m)) where the Xi are i.i.d. n-dimensional standard

Gaussian and Yi = f(X(i)) = sgn(wTX(i)), we can estimate the Hermite coefficients Hei in the

exact same way that we estimated the Chow coefficients, namely by computing

µ̂j :=
m∑
i=1

Y (i)X
(i)
j (6.23)

for j ∈ [n]. We can estimate the weights by rescaling µ̂ by
√

π
2 and outputting the hypothesis

h(x) = sgn
(√

π

2
µ̂Tx

)
(6.24)

which is equivalent to just outputting

h(x) = sgn(µ̂Tx). (6.25)

In Section 6.5, we will show that if µ̂ is estimated to within L2 norm ε of the vector of Hermite coeffi-

cients, then h defined above is O(ε) close to the true LTF f in the sense that

P[f(X) 6= h(X)] < O(ε). (6.26)
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6.3 MI and CMI bounds

For the time-being however, we aim to use our information-theoretic toolkit to analyse the expected

generalisation error of this learning algorithm. Like in the discrete case, the algorithm is comprised

of two parts. First estimating the Hermite coefficients, i.e., computing µ̂(Z), then constructing the

approximate LTF h from the Hermite estimates, which we will denote by A(µ̂(Z)). As before, our

information-theoretic analysis will be focused on µ̂(Z); we will then apply the data processing inequality

to get a bound on the entire algorithm A(µ̂(Z)).

A first idea is to use the mutual information framework in Section 3.2. However, as we discussed there,

the quantity I(Z; µ̂(Z)) is infinite in this case because the feature space Z = Rn is continuous and the

algorithm µ̂ deterministic.

So a natural second idea is to compute the conditional mutual information quantity I
(
S;A(Z̃S) | Z̃

)
instead as we know this is always upper bounded by m ln 2. We can follow the exact same steps as in

the discrete case in Section 4.4, getting that

I
(
S;A(Z̃S) | Z̃

)
≤

n∑
j=0

E
z̃∼D⊗2m

[H(mµ̂j(z̃S))] . (6.27)

As before, we fix z̃ ∈ Z2×m and write

z̃ =

(x̃(0,1), ỹ(0,1)) · · · (x̃(0,m), ỹ(0,m))

(x̃(1,1), ỹ(1,1)) · · · (x̃(1,m), ỹ(1,m))

 (6.28)

so that µ̂j(z̃S) can be expressed as

mµ̂j(z̃S) =
n∑
i=1

ỹ(Si,i)x̃
(Si,i)
j (6.29)

for j ∈ [m]. In the discrete case x̃(Si,i)j ∈ {−1, 1} and so ỹ(Si,i)x̃(Si,i)j ∈ {−1, 1}, hence mµ̂j(z̃S)

was a binomial (plus a constant). However, in the continuous case, x̃(Si,i)j ∈ {−1, 1} ∈ R and so

ỹ(Si,i)x̃
(Si,i)
j ∈ R. With probability one over S, each mµ̂j(z̃S) will have a different real value for each

S, and so mµ̂j(z̃S) attains the maximum entropy of m ln 2, making the conditional mutual information

generalisation bound vacuous as well.
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6.4 Individual sample mutual information bound

Thankfully, this is a situation where the individual sample mutual information discussed in Section 3.3

is useful. Although µ̂ is a deterministic function of Z, it is not a deterministic function of any one Z(i),

since the inclusion of the other Z(j) for j 6= i introduce randomness. Our main result for this chapter is

in showing that this approach allows us to prove that the Hermite-based LTF learning algorithm achieves

an expected generalisation bound of O
(√

n
m

)
.

THEOREM 25 (Our result). The Hermite parameter LTF learner A described in the previous section

has expected generalisation error∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣ ≤ O(√ n

m

)
. (6.30)

We now prove this result in the remainder of this section.

Our end goal is to bound the quantity I(X(i), Y (i); µ̂). Note that since µ̂j = 1
m

∑m
i=1 sgn(wTX(i))X

(i)
j ,

in vector form we have µ̂ = 1
m

∑m
i=1 sgn(wTX(i))X(i). Note also that the individual sample mutual

information I(X(i), Y (i); µ̂) is invariant to the choice of i, hence without loss of generality we will take

i = 1. Then,

I
(
X(i), Y (i); µ̂

)
= I

(
X(1), Y (1); µ̂

)
(6.31)

= I(X(1); µ̂) (6.32)

= I(X(1);mµ̂) (6.33)

= I

(
X(1);

m∑
k=1

sgn(wTX(k))X(k)

)
(6.34)

= I

(
X(1); sgn(wTX(1))X(1) +

m∑
k=2

sgn(wTX(k))X(k)

)
. (6.35)

where Equation 6.33 is due to mutual information being invariant to scaling (Lemma 7).

Notice that in Equation 6.35 we want to compute the mutual information between a random variable

X(1) and a deterministic function of that random variable sgn(wTX(1))X(1) plus independent “noise”∑m
k=2 sgn(wTX(k))X(k). Notice that as m increases, the magnitude of the noise increases, and so we

would expect the mutual information to be decreasing in m. This is good news, as this implies the

expected generalisation error bound we get is also decreasing in m (see Theorem 10). The exact rate
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of decrease, however, is not a priori clear, and needs to be workoed out, which we do over the next

subsections.

To progress further, we first simplify Equation 6.35 using the following lemma.

LEMMA 13. Let X,Y be continuous independent random variables and f a deterministic function.

Then

I(X; f(X) + Y ) = h(f(X) + Y )− h(Y ). (6.36)

PROOF.

I(X; f(X) + Y ) = h(f(X) + Y )− h(f(X) + Y | X) (6.37)

= h(f(X) + Y )− E
x∼pX

[h(f(X) + Y | X = x)] (6.38)

= h(f(X) + Y )− E
x∼pX

[h(f(x) + Y | X = x)] (6.39)

= h(f(X) + Y )− E
x∼pX

[h(Y | X = x)] (6.40)

= H(f(X) + Y )−H(Y ) (6.41)

where Equation 6.37 is due to Lemma 6, and Equation 6.40 due to differential entropy being invariant

to translations (Lemma 9). �

Note the exact same argument also works for Shannon entropy in the case of discrete random variables,

but we will not use this result here.

Applying the above lemma to Equation 6.35 results in the simplified expression

I

(
X(1); sgn(wTX(1))X(1) +

m∑
k=2

sgn(wTX(k))X(k)

)

= h

(
m∑
k=1

sgn(wTX(k))X(k)

)
− h

(
m∑
k=2

sgn(wTX(k))X(k)

)
(6.42)

= h

(
m∑
k=1

sgn(wTX(k))X(k)

)
− h

(
m−1∑
k=1

sgn(wTX(k))X(k)

)
. (6.43)
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6.4.1 Differential entropy of the sample Hermite means

Let us now analyse the distribution of
∑m

k=1 sgn(wTX(k))X(k). For the simple case of m = 1, this

reduces to sgn(wTX(1))X(1). Consider an arbitrary point x ∈ Rn such that wTx ≥ 0, and let g(x) :=

sgn(wTx)x. Notice that

g(−x) = sgn(wT (−x))(−x) (6.44)

= −sgn(wTx)(−x) (6.45)

= sgn(wTx)x (6.46)

= g(x). (6.47)

In other words any −x with wT (−x) ≤ 0, is mapped to the same point that x, which has wTx ≥ 0, is

mapped to. Moreover, by rotational symmetry of the n-dimensional standard Gaussian density, −x has

the same Gaussian density as x. Hence sgn(wTX(1))X(1) has support on the set
{
x : wTx ≥ 0

}
and

the density there is twice the normal density, i.e.,

2ϕn(x)1
{
wTx ≥ 0

}
. (6.48)

Note that the differential entropy of the above p.d.f. is invariant to w by the rotational symmetry of the

Gaussian density. Hence, for the purposes of computing differential entropy we may take w = e1, i.e.,

h(sgn(wTX(1))X(1)) = h(sgn(X
(1)
1 )X(1)). (6.49)

The same argument shows that for the case of general m,

h

(
m∑
k=1

sgn(wTX(k))X(k)

)
= h

(
m∑
k=1

sgn(eT1X
(k))X(k)

)
(6.50)

= h

(
m∑
k=1

sgn(X
(k)
1 )X(k)

)
(6.51)

= h

(
m∑
k=1

∣∣∣X(k)
1

∣∣∣ , m∑
k=1

sgn(X
(k)
1 )X

(k)
2 , . . . ,

m∑
k=1

sgn(X
(k)
1 )X(k)

n

)
.

(6.52)

We now show that the n random variables inside the differential entropy are mutually independent. We

prove this only for the case m = 1, because the independence of the X(k) over k imply the case of

general m.
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Recall that by definition, n random variables are independent if their joint c.d.f. factors into the product

of the marginal c.d.f.s. Let E :=
{∣∣∣X(1)

1

∣∣∣ ≤ x1, sgn(X
(1)
1 )X

(1)
2 ≤ x2, . . . , sgn(X

(1)
1 )X

(1)
n ≤ xn

}
. For

x1 ≥ 0 and x2, . . . , xn ∈ R, the joint c.d.f. is

P[E ] = P[E , sgn(X
(1)
1 ) = 1] + P[E , sgn(X

(1)
1 ) = −1] (6.53)

= P
[
0 ≤ X(1)

1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn
]

(6.54)

+ P [0 ≥ X1 ≥ −x1, X2 ≥ −x2, . . . , Xn ≥ −xn]

= 2P
[
0 ≤ X(1)

1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn
]

(6.55)

= 2

(
Φ(x1)−

1

2

) n∏
k=2

Φ(xk). (6.56)

On the other hand,

P[|X1| ≤ x1] = P[−x1 ≤ X1 ≤ x1] (6.57)

= Φ(x1)− Φ(−x1) (6.58)

= 2Φ(x1)− 1, (6.59)

and for j > 1,

P[sgn(X1)Xk ≤ xk] = P[sgn(X1)Xk ≤ xk, X1 ≥ 0] (6.60)

+ P[sgn(X1)Xk ≤ xk, X1 < 0]

= P[Xk ≤ xk, X1 ≥ 0] (6.61)

+ P[Xk ≥ −xk, X1 < 0]

=
1

2
Φ(xk) +

1

2
Φ(xk) (6.62)

= Φ(xk). (6.63)
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Hence the random variables |X(1)
1 |, sgn(X

(1)
1 )X

(1)
2 , . . . , sgn(X

(1)
1 )X

(1)
n are mutually independent, and

thus so too are
∑m

k=1

∣∣∣X(k)
1

∣∣∣ ,∑m
k=1 sgn(X

(k)
1 )X

(k)
2 , . . . ,

∑m
k=1 sgn(X

(k)
1 )X

(k)
n . Consequently their dif-

ferential entropy is

h

(
m∑
k=1

∣∣∣X(k)
1

∣∣∣ , m∑
k=1

sgn(X
(k)
1 )X

(k)
2 , . . . ,

m∑
k=1

sgn(X
(k)
1 )X(k)

n

)

= h

(
m∑
k=1

|X(k)
1 |

)
+

n∑
j=2

h

(
m∑
k=1

sgn(X
(k)
1 )X

(k)
j

)
. (6.64)

Notice that sgn(X
(k)
1 )X

(k)
j can be understood as independently and uniformly flipping the sign of X(k)

j ;

clearly this does not change the distribution. Hence
∑m

k=1 sgn(X
(k)
1 )X

(k)
j ∼ N (0,m) and so

n∑
j=2

h

(
m∑
k=1

sgn(X
(k)
1 )X

(k)
j

)
= (n− 1) · 1

2
log(2πem). (6.65)

Tying things together, this shows that

h

(
m∑
k=1

sgn(wTX(k))X(k)

)
= h

(
m∑
k=1

|X(k)
1 |

)
+
n− 1

2
log(2πem). (6.66)

Hence,

h

(
m∑
k=1

sgn(wTX(k))X(k)

)
− h

(
m−1∑
k=1

sgn(wTX(k))X(k)

)

= h

(
m∑
i=1

|X(i)
1 |

)
− h

(
m−1∑
i=1

|X(i)
1 |

)
+
n− 1

2
log

(
1 +

1

m− 1

)
(6.67)

6.4.2 Differential entropy of the sum of half-normals

To continue, we would like to write down an expression for h
(∑m

k=1 |X
(k)
1 |
)

. For notational simplicity

in this section, we will rewrite this as h (
∑m

k=1 |Xk|) where each Xk is understood to be i.i.d. N (0, 1).

As a first attempt, let us try compute the p.d.f. of Sm :=
∑m

k=1 |Xk| analytically.

The case m = 2 has been analysed by Mark (2013). The c.d.f. of S2 := |X1|+ |X2| is

FS2(s) = P[|X1|+ |X2| ≤ s] (6.68)

= P[(X1, X2) ∈ A2(s)] (6.69)
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where A2(s) := {(x1, x2) ∈ R2 : |x1| + |x2| ≤ s}. The situation is illustrated diagrammatically

in to Figure 6.1a. Note that A2(s) is a rotated square with a half-width of s√
2
. Because X(1), X(2)

x1

x2

s

s

−s

−s A2(s)

(A) A2(s) := {(x1, x2) ∈ R2 : |x1|+ |x2| ≤
s}.

x1

x2

s
s√
2

s√
2

A′
2(s)

(B) A′
2(s) =

[
− s√

2
, s√

2

]2
.

FIGURE 6.1. Illustration of the region A2(s) and its rotation A′2(s).

are independent standard Gaussian, their joint density has circular symmetry, and so we can rotate the

square A2(s) so that it is parallel to the axes. In other words,

P [(X1, X2) ∈ A2(s)] = P
[
(X1, X2) ∈ A′2(s)

]
(6.70)

where A′2(s) :=
[
− s√

2
, s√

2

]2
is an axis-parallel square with the same half-width. See Figure 6.1b.

By exploiting the independence of X1 and X2, we have

P
[
(X1, X2) ∈ A′2(s)

]
= P

[
(X1, X2) ∈

[
− s√

2
,
s√
2

]2]
(6.71)

= P

[
X1 ∈

[
− s√

2
,
s√
2

]]2
(6.72)

=

[
Φ

(
s√
2

)
− Φ

(
− s√

2

)]2
(6.73)

=

[
2Φ

(
s√
2

)
− 1

]2
. (6.74)
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Hence the density of S2 := |X1|+ |X2| is the derivative of the above expression,

fS2(s) =
d

ds

[
2Φ

(
s√
2

)
− 1

]2
(6.75)

= 2
√

2

[
2Φ

(
s√
2

)
− 1

]
ϕ

(
s√
2

)
. (6.76)

Let us try to generalise this argument for m > 2. For m = 3, we have

FS3(s) = P[(X1, X2, X3) ∈ A3(s)] (6.77)

where A3(s) := {(x1, x2, x3) ∈ R3 : |x1| + |x2| + |x3| ≤ s}. The solid A3(s) is an octahedron and

visualised in Figure 6.2. Unfortunately, the same trick of rotating A3(s) does not generalise. However,

FIGURE 6.2. Illustration of the solidA3(s) := {(x1, x2, x3) ∈ R3 : |x1|+|x2|+|x3| ≤
s} for s = 1.

notice that for any horizontal “slice” of A3(s) at a fixed height X3 = x3, we can compute its differential

probability as FS2(s− |x3|)ϕ(x3) dx3. Then, by using the symmetry of the Gaussian density, we have

FS3(s) = 2

∫ s

0
FS2(s− x3)ϕ(x3) dx3. (6.78)

This argument generalises to arbitrary m in that FSm satisfies the recurrence

FSm(s) = 2

∫ s

0
FSm−1(s− x)ϕ(x) dx. (6.79)

with initial condition FS2(s) =
[
2Φ
(

s√
2

)
− 1
]2

.
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Unfortunately, it does not seem very tractable to compute the derivative of this expression for general m

to get the density, and then use this to compute the differential entropy. However, at the end of the day,

we would like to analyse the asymptotic behaviour of a learning algorithm, and so perhaps we can settle

for asymptotic expressions of h(Sm) instead.

Like we did in the discrete case, because we are considering the asymptotics of a sum of i.i.d. random

variables, it is natural to turn to the central limit theorem (Theorem 31). It can be easily shown that a

half-normal has mean
√

2
π and variance 1− 2

π . Let Zk := |Xk| −
√

2
π and consider the normalized sum

Sm :=
Z1 + · · ·+ Zm√

m
(6.80)

which has mean 0 and variance 1− 2
π . Then by the central limit theorem,

Sm
d−→ N

(
0, 1− 2

π

)
(6.81)

hence we might expect that h(Sm) → h(N (0, 1)). In fact, this result is indeed true, and was proven in

the celebrated work of Barron (1986).

THEOREM 26 (Entropic central limit theorem (Barron, 1986)). Let Z1, · · · , Zm be i.i.d. continuous

random variables with mean 0 and variance σ2, and define the normalized sum

Sm :=
Z1 + · · ·+ Zm√

m
. (6.82)

Then the KL divergence between Sm and N (0, σ2) converges to zero, i.e.,

lim
m→∞

D(Sm ‖ N (0, σ2)) = 0 (6.83)

if and only if D(Sm ‖ N (0, σ2)) <∞ for some m.
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This then implies h(Sm) → h(N (0, σ2)) = 1
2 ln 2πeσ2 because, letting fm denote the density of Sm,

we have

D(Sm ‖ N (0, σ2)) =

∫
R
fm(x) ln

(
fm(x)

1
σ
√
2π

exp(− 1
2σ2x2)

)
dx (6.84)

=

∫
R
fm(x) ln fm(x)dx+

∫
R
fm(x) ln

(
σ
√

2π
)
dx

+

∫
R
fm(x)

1

2σ2
x2dx (6.85)

= −h(fm) +
1

2
ln
(
2πσ2

)
+

1

2σ2
σ2 (6.86)

= −h(fm) +
1

2
ln
(
2πeσ2

)
(6.87)

= −h(Sm) + h(N (0, σ2)) (6.88)

where Equation 6.86 follows because fm is a density so fm integrates to one, and because Sm has mean

zero so its second moment equals its variance σ2.

As an aside, note that the resultD(Sm ‖ N (0, σ2)) = −h(Sm)+h(N (0, σ2)) only relied on Sm having

mean zero and variance σ2, and was independent of anything else about Sm. Hence the result is true

for any continuous random variable with mean zero and variance σ2. Moreover, non-negativity of KL

divergence implies that

h(Sm) ≤ h(N (0, σ2)) (6.89)

with equality if and only if Sm ∼ N (0, σ2). In other words, we have shown the following result.

THEOREM 27. The normal density uniquely maximises differential entropy over all densities with a

given variance. In other words, if X is a continuous random variable with mean zero (without loss of

generality) and variance σ2, then

h(X) ≤ 1

2
ln(2πeσ2) (6.90)

with equality if and only if X ∼ N (0, σ2).

Going back to the entropic central limit theorem, we note that the proof of the result is highly nontrivial

and is in fact a stronger statement than the standard central limit theorem. The proof relies on a con-

nection between entropy and Fisher information (Barron, 1986), unlike the proof of the standard central

limit theorem which is based on characteristic functions.
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Finally, for our original problem we have

h

(
|X1|+ · · ·+ |Xm|√

m

)
= h

 |X1|+ · · ·+ |Xm| −m
√

2
π√

m

 (6.91)

since differential entropy is invariant to translations (Lemma 9). Taking limits on both sides and applying

the entropic central limit theorem yields

lim
m→∞

h

(
|X1|+ · · ·+ |Xm|√

m

)
=

1

2
ln

(
2πe

(
1− 2

π

))
. (6.92)

By a standard result in analysis, this implies

lim
m→∞

[
h

(
|X1|+ · · ·+ |Xm|√

m

)
− h

(
|X1|+ · · ·+ |Xm−1|√

m− 1

)]
= 0. (6.93)

We have

h

(
|X1|+ · · ·+ |Xm|√

m

)
− h

(
|X1|+ · · ·+ |Xm−1|√

m− 1

)
(6.94)

= h

(
m∑
k=1

|Xk|

)
− 1

2
lnm− h

(
m−1∑
k=1

|Xk|

)
+

1

2
ln(m− 1) (6.95)

= h

(
m∑
k=1

|Xk|

)
− h

(
m−1∑
k=1

|Xk|

)
+

1

2
ln

(
1 +

1

m− 1

)
, (6.96)

hence,

lim
m→∞

[
h

(
m∑
k=1

|Xk|

)
− h

(
m−1∑
k=1

|Xk|

)
+

1

2
ln

(
1 +

1

m− 1

)]
= 0. (6.97)

Unfortunately this does not tell us what the asymptotic behaviour of h (
∑m

k=1 |Xk|)−h
(∑m−1

k=1 |Xk|
)

is

except that it is o(1). For example it does not immediately follow that h (
∑m

k=1 |Xk|)−h
(∑m−1

k=1 |Xk|
)

=

O
(
−1

2 ln
(

1 + 1
m−1

))
.

The problem is that the entropic central limit theorem does not tells us how quickly the convergence in

entropy is, only that it does converge. Some further reading into the literature leads to a more recent

result by Bobkov et al. (2013) who derive an asymptotic expansion of the quantity D(Sm ‖ N (0, σ2)).

As a special case of this expansion, they derive the following result.

THEOREM 28 (Bobkov et al. (2013)). Suppose EZ4
1 <∞. Then

D(Sm ‖ N (0, σ2)) =
1

12m

(
EZ3

1

)2
+ o

(
1

m logm

)
. (6.98)
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Combining this result with Equation 6.88, we get that

h(Sm)− h(Sm−1) = h(N (0, σ2))−D(Sm ‖ N (0, σ2))− h(N (0, σ2)) +D(Sm−1 ‖ N (0, σ2))

(6.99)

= D(Sm−1 ‖ N (0, σ2))−D(Sm ‖ N (0, σ2)) (6.100)

=
1

12

(
EZ3

1

)2( 1

m− 1
− 1

m

)
+ o

(
1

m logm

)
(6.101)

=
1

12

(
EZ3

1

)2( 1

m(m− 1)

)
+ o

(
1

m logm

)
. (6.102)

For our case where Zi := |Xi| −
√

2
π it can be shown that

(
EZ3

1

)2
=

2(π − 4)2

(π − 2)3
≈ 0.9910. (6.103)

By Equation 6.96,

h

(
m∑
k=1

|Xk|

)
− h

(
m−1∑
k=1

|Xk|

)
= h(Sm)− h(Sm−1)−

1

2
ln

(
1 +

1

m− 1

)
(6.104)

= O

(
1

m2

)
+ o

(
1

m logm

)
(6.105)

= o

(
1

m logm

)
. (6.106)

Finally, backtracking through all our calculations (Equation 6.67, Equation 6.43 and Equation 6.35), we

can conclude that the individual sample mutual information satisfies

I
(
Z(i); µ̂(Z)

)
= o

(
1

m logm

)
+
n− 1

2
log

(
1 +

1

m− 1

)
(6.107)

≤ o
(

1

m logm

)
+
n− 1

2
log

(
exp

(
1

m− 1

))
(6.108)

≤ o
(

1

m logm

)
+O

( n
m

)
(6.109)

= O
( n
m

)
. (6.110)

By the data processing inequality, the individual sample mutual information for the full learning algo-

rithm then satisfies

I
(
Z(i);A(µ̂(Z))

)
≤ O

( n
m

)
, (6.111)

and so, combining this with Theorem 10 gives the intended result of Theorem 25.
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6.5 From Hermite estimates to an LTF

In Section 6.2, we stated that the Hermite estimates µ̂ could easily be used to construct a good approxi-

mation of the true LTF f by simply outputting an LTF with µ̂ as its weights. In this section, we formalise

and prove this result.

THEOREM 29 (Our result). Suppose that µ̂ ∈ Rn is such that

‖µ̂−H(e)‖2 < ε (6.112)

where H(e) := (H(e1), · · · , H(en)) are the degree 1 Hermite coefficients of an origin-centred LTF f .

Then the hypothesis

h(x) := sgn(µ̂Tx) (6.113)

satisfies

P
X∼ϕn

[f(X) 6= h(X)] < O(ε). (6.114)

This result is likely known to researchers in the field (Servedio, 2023) but did not seem to be present in

the literature; for the sake of copmleteness, we derive this result and provide a proof below.

PROOF. Since He =
√

2
πw, it will be helpful to define the weight estimates

ŵ :=

√
π

2
µ̂, (6.115)

and the normalised weight estimates

w̃ :=
ŵ

‖ŵ‖2
. (6.116)

Then,

P [f(X) 6= h(X)] = P
[
sgn(wTX) 6= sgn(µ̂TX)

]
(6.117)

= P
[
sgn(wTX) 6= sgn(w̃TX)

]
(6.118)

= P[wTX > 0, w̃TX < 0] + P[wTX < 0, w̃TX > 0] (6.119)

= 2P[wTX > 0, w̃TX < 0]. (6.120)
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Now, because w and w̃ have norm one, wTX and w̃TX are both N (0, 1) random variables. They are

jointly distributed with covariance

Cov[wTX, w̃TX] = E[(wTX)(w̃TX)]−E[wTX]E[w̃TX] (6.121)

= E

[(
n∑
i=1

wiXi

)(
n∑
i=1

w̃iXi

)]
− 0 (6.122)

=
n∑
i=1

wiw̃iE[X2
i ] +

∑
i 6=j

wiw̃jE[XiXj ] (6.123)

=

n∑
i=1

wiw̃i + 0 (6.124)

= wT w̃. (6.125)

Hence (wTX, w̃TX) has the same distribution as (Y,wT w̃Y +
√

1− (wT w̃)2Z) where Y and Z are

independent N (0, 1). Thus,

2P
[
wTX > 0, w̃TX < 0

]
= 2P

[
Y > 0, wT w̃Y +

√
1− (wT w̃)2Z < 0

]
(6.126)

= 2P[Y > 0]P

[
wT w̃Y +

√
1− (wT w̃)2Z < 0 | Y > 0

]
(6.127)

= P

[
wT w̃|Y |+

√
1− (wT w̃2)Z < 0

]
(6.128)

= P [Z < −α|Y |] (6.129)

where α := wT w̃√
1−(wT w̃)2

. This probability can be calculated by integrating the product of the marginal

densities of |Y | and Z over the region A := {(y, z) ∈ [0,∞)× R | z < −αy}. Refer to Figure 6.3 for

a diagram of this region.

Specifically,

P[Z < −α|Y |] =

∫∫
A

1√
2π
· 2√

2π
exp

(
−1

2
(y2 + z2)

)
dy dz (6.130)

=

∫∫
A

1

π
exp

(
−1

2
(y2 + z2)

)
dy dz. (6.131)

To evaluate this integral, make a change of variable to polar coordinates (y, z) = (r cos θ, r sin θ).

Recall the Jacobian matrix of this transformation has determinant r. Hence by the multivariate change
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y

z

tan−1(α)

A

FIGURE 6.3. Illustration of the region A := {(y, z) ∈ [0,∞)× R | z < −αy}.

of variables theorem (Theorem 37),∫∫
A

1

π
exp

(
−1

2
(y2 + z2)

)
dy dz =

∫ ∞
0

∫ − tan−1(α)

−π
2

1

π
exp

(
−1

2
(r2 cos2 θ + r2 sin2 θ)

)
r dθ dr

(6.132)

=
1

π

∫ ∞
0

∫ − tan−1(α)

−π
2

r exp

(
−1

2
r2
)
dθ dr (6.133)

=
1

π

∫ ∞
0

(π
2
− tan−1(α)

)
r exp

(
−1

2
r2
)
dr (6.134)

=

(
1

2
− tan−1(α)

π

)[
− exp

(
−1

2
r2
)]r=∞

r=0

(6.135)

=
1

2
− tan−1(α)

π
(6.136)

which is monotonically decreasing as a function of α and approaches zero as α → ∞. Hence to upper

bound this quantity, we seek to lower bound α which amounts to lower bounding the quantity wT w̃. To
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do so, note that

‖w − w̃‖22 =
n∑
i=1

(wi − w̃i)2 (6.137)

=
n∑
i=1

w2
i − 2

n∑
i=1

wiw̃i +
n∑
i=1

w̃2
i (6.138)

= ‖w‖22 − 2wT w̃ + ‖w̃‖22 (6.139)

= 2− 2wT w̃. (6.140)

On the other hand, by the triangle inequality,

‖w − w̃‖2 ≤ ‖w − ŵ‖2 + ‖ŵ − w̃‖2. (6.141)

For the second summand on the right hand side, we have

‖ŵ − w̃‖2 = ‖‖ŵ‖2 · w̃ − w̃‖2 (6.142)

= |‖ŵ‖2 − 1| · ‖w̃‖2 (6.143)

= |‖ŵ‖2 − ‖w‖2| (6.144)

≤ ‖ŵ − w‖2, (6.145)

where the second last line is because we assumed w has norm one, and the last line is due to the reverse

triangle inequality. Hence,

‖w − w̃‖2 ≤ 2‖ŵ − w‖2. (6.146)

But we assumed that our Hermite estimates µ̂ are within L2 norm ε of the true Hermite coefficients.

Multiplying both sides of Equation 6.112 by
√

π
2 gives

‖ŵ − w‖ <
√
π

2
ε (6.147)

and so

‖w − w̃‖2 <
√

2πε. (6.148)

Squaring both sides yields

‖w − w̃‖2 < 2πε2, (6.149)

and combining this with Equation 6.140 gives

2− 2wT w̃ < 2πε2, (6.150)
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or equivalently,

wT w̃ > 1− πε2. (6.151)

Hence we have

α :=
wT w̃√

1− (wT w̃)2
(6.152)

>
1− πε2√

1− (1− πε2)2
(6.153)

=
1− πε2√

2πε2 − π2ε4
(6.154)

=: g1(ε). (6.155)

We would like to determine the asymptotic behvaiour of g1(ε). We have

εg1(ε) =
1− πε2√
2π − π2ε2

. (6.156)

If for instance, ε ≤ 1
2 , then

εg1(ε) ≥
1− π/4

2π − π2/4
≈ 0.11 (6.157)

and so we must have

g1(ε) = Ω(1/ε). (6.158)

We also have

P[f(X) 6= h(X)] =
1

2
− tan−1(α)

π
=: g2(α). (6.159)

To determine the asymptotic behaviour of g2(α), we have, by L’Hôpital’s rule (Theorem 36),

lim
α→∞

αg2(α) = lim
α→∞

1
2 −

1
π tan−1(α)

1
α

(6.160)

= lim
α→∞

− 1
π(1+α2)

− 1
α2

(6.161)

= lim
α→∞

α2

π(1 + α2)
(6.162)

=
1

π
. (6.163)

But since α > Ω(1/ε) this implies g2(α) < O(ε), i.e.,

P[f(X) 6= h(X)] < O(ε). (6.164)

�



CHAPTER 7

Conclusion and further work

In this thesis we have looked at a variety of ideas that can be used to provably bound the generalisation

error of a machine learning algorithm. In Chapter 2, we introduced the formal setting of statistical

learning, and defined what it means to be a good learning algorithm — this is the definition of PAC

learning, which loosely says that, given enough samples m, a good learner should be able to learn a

target function f to arbitrary accuracy ε with arbitrarily high probability 1 − δ. We also saw how a

combinatorial quantity of the hypothesis space, its VC dimension, characterises the PAC learnability of

H, and provides tight sample complexity bounds for any ERM algorithm. However, this does not give

us any guarantees on any general learning algorithm A.

In Chapter 3, we saw that the mutual information I(Z;A(Z)) between the input samples Z and the

output hypothesis of a learning algorithm A, and some variations of this idea, could be used to de-

rive bounds on the expected generalisation error of any learning algorithm A, that is the quantity∣∣∣∣ EZ,A[R(A(Z))− R̂Z(A(Z))
]∣∣∣∣.

In Chapter 4 we applied these information-theoretic tools in analysing a relatively simple algorithm that

learnt linear threshold functions over {−1, 1}n given samples drawn uniformly from {−1, 1}n. We saw

that LTFs were characterised by their degree 0 and degree 1 Fourier coefficients, collectively known

as the Chow parameters. Based off this idea, our learning algorithm learns the Chow parameters to

sufficient accuracy, then uses a result by O’Donnell and Servedio (2008) to approximately reconstruct

the LTF from the estimated Chow parameters. Learning the LTF to accuracy parameter ε unfortu-

nately required an exponential number of samples in 1/ε and had time complexity doubly exponential

in 1/ε — the difficulty lies in reconstructing the LTF from the Chow estimates. Despite this, using the

mutual information framework introduced in Section 3.2, we derived a novel result in Section 4.3 that

this learning algorithm had expected generalisation error O
(√

n logm
m

)
. Using the conditional mutual

83
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introduced in Section 3.4, we were able to derive a slightly more fine-grained bound in Section 4.4 that

depended on the particular behaviour of f .

In Chapter 5 we saw that our information-theoretic analysis could be applied to a very similar algorithm

by Linial et al. (1993) and we derived a novel result that their algorithm has expected generalisation

error O
(√

|F| logm
m

)
where F is an ε concentration for the Fourier weights of f .

Finally, in Chapter 6, we generalised the setup to consider learning LTFs over Rn, with samples now

drawn from the n dimensional standard Gaussian density. We saw that many of the properties form

the discrete case carried over. Importantly, we saw that the Hermite coefficients, the equivalent of the

Fourier coefficients in this setting, continue to characterise LTFs, and that we can estimate the Her-

mite coefficients in the exact same way. Furthermore, in the continuous setting, we saw that is trivial

to reconstruct an approximate LTF given approximate Hermite estimates, which is very much untrue

for the discrete case. Specifically, we show that if the Hermite estimates are within L2 norm ε of the

true Hermite coefficients, then the corresponding LTF is O(ε) far from the true LTF. Turning to our

information-theoretic framework, we show that the mutual information and conditional mutual infor-

mation framework fail to provide nontrivial generalisation bounds — this is due to having a continuous

feature space Rn and a deterministic learning algorithm. Thankfully, using the individual sample mutual

information approach described in Section 3.3, we were able to derive a novel result that the learning

algorithm has an expected generalisation error ofO
(√

n
m

)
, using a different and more involved analysis

compared to the discrete case.

There are a number of directions that can be pursued further with this line of work. LTFs are one of

the most fundamental building blocks in learning theory and thus often used in more advanced learning

algorithms, so it would be interesting to see how our theory carries over to those cases. For example,

Diakonikolas et al. (2020) study the problem of PAC learning neural networks with one hidden layer

and ReLU activation under the Gaussian distribution, which basically boils down to learning multiple

dependent LTFs at once. Their algorithm exploits the idea of estimating the degree 2 Hermite coefficients

instead of the degree 1 coefficients which was the subject of our analysis in Chapter 6.

Another direction of work is to investigate if our analysis can be tweaked to obtain bounds on more gen-

eralised information measures that produce high probability generalisation guarantees such as Sibson’s

α mutual information Iα(Z;A(Z)) (Esposito et al., 2020a), as discussed in Section 3.2. Unfortunately,
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as we discuss there, not all the properties that regular mutual information satisfies carry over, hence

some new ideas are required.

A different idea is to consider if our setup can be generalised to beyond the two settings of the uniform

Boolean hypercube and Gaussian density that we analysed in this thesis. Furthermore, the expected

generalisation error we derived in both settings was, ignoring logarithmic factors, Õ
(√

n
m

)
, however

the analysis we used to attain this bound was very different between the two cases. It would be interesting

to see if there is a more unified approach that lets us attain this bound.

Finally, some empirical analysis could be performed to check if our bound is tight in practice, by im-

plementing the described learning algorithms, running them, and collecting statistics about the general-

isation error empirically. This would be difficult to perform in the discrete case because the process of

reconstructing the LTF from the Chow estimates described by O’Donnell and Servedio (2008) is highly

nontrivial, however the continuous setting is quite straightforward to implement.
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APPENDIX A

Mathematical results

A.1 Probability theory

We review some basic results in probability theory.

DEFINITION 23 (Convergence in probability). A sequence of random variables X1, X2, · · · converges

in probability to c ∈ R, written Xn
P−→ c, if

lim
n→∞

P [|Xn − c| ≥ ε] = 0. (A.1)

DEFINITION 24 (Convergence in distribution). A sequence of random variables X1, X2, · · · converges

in distribution to a random variable X , written Xn
d−→ X , if

lim
n→∞

FXn(x) = FX(x) (A.2)

for all x at which FX(x) is continuous, where FXn and FX denote the c.d.f. of Xn and X respectively.

THEOREM 30 (Weak law of large numbers). Let X1, X2, · · · be i.i.d. random variables with mean

E[X1] = µ. Then,
1

n

n∑
i=1

Xn
P−→ µ. (A.3)

THEOREM 31 (Lindeberg-Lévy central limit theorem). Let X1, X2, · · · be i.i.d. random variables with

mean E[X1] = µ and variance Var[X1] = σ2 <∞. Then,

√
n

((
1

n

n∑
i=1

Xi

)
− µ

)
d−→ N (0, σ2). (A.4)

THEOREM 32 (Jensen’s inequality). Let ϕ be a convex function, and X a random variable. Then

E [ϕ(X)] ≥ ϕ(EX). (A.5)
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THEOREM 33 (Markov’s inequality). Let X ≥ 0 be a nonnegative random variable. Then

P[X ≥ c] ≤ E[X]

c
(A.6)

for any c > 0.

THEOREM 34 (Hoeffding’s inequality). Let X1, · · · , Xm be independent random variables such that

Xi ∈ [ai, bi] for i ∈ [m], and let Sm :=
∑m

i=1Xi. Then

P (|Sm −ESm| ≥ c) ≤ 2 exp

(
− 2c2∑m

i=1(bi − ai)2

)
.

Hoeffding’s inequality can be used to prove the following result that states the required sample com-

plexity required for the sample mean to be close to the true mean.

THEOREM 35. Given m i.i.d. samples X1, · · · , Xm of a bounded random variable taking values in

[a, b], the sample mean 1
m

∑m
i=1Xi is within an additive ±ε of the true mean EX1 with probability at

least 1− δ when using at least

m =
(b− a)2

2ε2
log

(
2

δ

)
= (b− a)2O

(
1

ε2
log

1

δ

)
(A.7)

samples.

A.2 Calculus

We review some basic results in calculus.

THEOREM 36 (L’Hôpital’s rule). Suppose f, g are differentiable with limx→a f(x) = limx→a g(x) = 0

or limx→a f(x) = limx→a g(x) =∞ for some real (possibly infinite) number a. Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. (A.8)

THEOREM 37 (Multivariate change of variables theorem). Let ϕ : (x, y) → (u, v) be a differentiable

invertible map between two open subsets of R2. Then,∫∫
A
f(x, y) dx dy =

∫∫
ϕ(A)

f(ϕ−1(u, v))

∣∣∣∣d(x, y)

d(u, v)

∣∣∣∣ du dv, (A.9)

where,

d(x, y)

d(u, v)
:=

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 (A.10)
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is the Jacobian matrix of ϕ−1 and
∣∣∣d(x,y)d(u,v)

∣∣∣ denotes the absolute value of the determinant of the Jacobian

matrix.
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