
CHAPTER 3

Information-theoretic generalisation bounds

We have seen that the PAC learnability of a hypothesis class is characterised by its VC dimension and

that we can get generalisation bounds for any ERM algorithm. However, VC theory does not tell us how

well any generalalgorithm will perform outside the class of ERMs. This is to be expected since VC

dimension is a measure of the hypothesis classH only, and is independent of any learning algorithm for

H . Moreover, although any ERM algorithm is sample-optimal, solving the ERM problem can be NP

hard for certain hypothesis classes (Feldman et al., 2012). Hence we would like tools to analyse learning

algorithmsin general.

Recently, information-theoretic tools to study generalisation have gathered attention (Russo and Zou,

2016; Xu and Raginsky, 2017; Steinke and Zakynthinou, 2020; Bu et al., 2020). These methods produce

algorithm-dependentgeneralisation bounds, meaning they can be used to tell us how wellanyparticular

algorithm will generalise. The high level idea is that themutual informationbetween the inputZ 2

Z m of the learning algorithm and its output hypothesisA(Z ) 2 H is informative of the algorithm's

generalisation ability. To make these ideas rigorous, we will need to take a rather long detour into

information theory to formalise what we mean by “information”.

3.1 Shannon information theory

In this section we introduce the area of information theory. In particular we will introduce Shannon

entropy, Kullback-Leibler divergence and mutual information for discrete random variables, and some

of their important properties. We will then extend these ideas to the continuous case and discuss the

similarities and differences between the discrete and continuous variants. Proofs of some results will be

given only where we think the proofs are relevant and informative. For a more comprehensive treatment

of the topic, the reader is invited to consult a reference on information theory such as Cover and Thomas
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(2006). On the other hand, the reader who is already informed about this topic, for example after having

read Chapter 2 of Cover and Thomas (2006), is invited to skip to Section 3.2.

Information theory has its roots in the landmark paper by Shannon (1948), who was motivated by com-

munication theory. One of his motivating questions was determining the ultimate data compression rate

in communication. The answer turns out to be the entropyH , a fundamental quantity which we will

discuss shortly, and which is connected with mutual information. Since Shannon's work, information

theory has made fundamental contributions to physics, computer science, statistics, and much more

(Cover and Thomas, 2006).

3.1.1 Entropy

To motivate the de�nition of entropy, suppose that you are given a random integer between 1 and 16,

with each choice being equally likely, i.e., having probabilityp = 1=16. How many yes/no questions

are required to determine what integer you are given? The answer islog2(1=p) = 4 by effectively

performing a binary search using the questions. More generally, for an outcomex that occurs with prob-

ability p(x), it takes approximatelylog2(1=p(x)) yes/no questions, which can be thought of as “bits” of

information, to distinguish it from other outcomes having the same probability. Notelog2(1=p(x)) is

only “approximately” correct because of the cases when1=p(x) is not an exact power of 2. The quan-

tity log2(1=p(x)) can be alternatively interpreted as a measure of surprise or uncertainty in seeing the

outcomex — outcomes that have a lower probabilityp(x) of occurring have a higherlog2(1=p(x)) .

Now consider a discrete random variableX taking valuesx 2 X , each with probabilityp(x) := P[X =

x]. Theentropyof X is de�ned as theaveragevalue oflog2(1=p(x)) — it is the average surprise or bits

of information to distinguish the realisations ofX .

DEFINITION 6 (Entropy). Let X be a discrete random variable/vector. Then the (Shannon) entropy of

X is

H (X ) := E
X � p

�
log2

1
p(X )

�
=

X

x

p(x) log2
1

p(x)
(3.1)

in bits, where we de�ne0 log 1
0 := 0 aslimp! 0 plog2

1
p = 0 .

For example consider a Bernoulli random variableX that takes value 1 with probabilityp and 0 with

probability1 � p. Then its entropy is

H (X ) = � p log2 p � (1 � p) log2(1 � p) (3.2)
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bits.

It can be easily checked that the above expression is maximised atp = 1=2 in which case the entropy is

exactly one bit. This makes intuitive sense as the outcome of a coin toss is most uncertain or surprising

when the coin is unbiased. On the other hand, we would not be very uncertain or surprised in seeing the

outcome of the toss of a coin that is heavily biased towards heads or tails. Correspondingly, asp ! 0

or p ! 1, the random variable becomes deterministic and Equation 3.2 approaches zero. See Figure 3.1

below for a diagram.
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FIGURE 3.1. Graph ofH (X ) whereX � Bernoulli(p) as a function ofp. Entropy is
maximised whenp = 1=2.

More generally, entropy is always non-negative, and is equal to zero exactly when the random variable

is deterministic (a constant).

LEMMA 1 (Entropy is non-negative).H (X ) � 0 with equality if and only ifX is deterministic.

PROOF. Forp(x) 2 (0; 1] we havelog2
1

p(x) > 0. Whenp(x) = 0 , by de�nition p(x) log2
1

p(x) = 0 .

Hence
P

x p(x) log2
1

p(x) � 0. For equality to occur, we must have eitherp(x) = 0 or p(x) = 1 for all

x since these are the only two cases for whichp(x) log2
1

p(x) = 0 . �

Also, observe that the de�nition of entropy is dependent only on the probability mass functionp(x), and

not on what values the random variable attains. Suppose we apply a functionf to a random variableX .

Then any realisationx 2 X of X is mapped tof (x). Moreover, if the functionf is injective, then the

valuef (x) could only have come from the original realisationx, which occurs with probabilityp(x). So
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after applyingf , the resulting random variable attains valuef (x) with probabilityp(x) for eachx 2 X .

Hence the entropy, which is dependent on only the probabilitiesp(x) remains unchanged.

LEMMA 2. Let f be an injective function andX a random variable/vector. Then

H (f (X )) = H (X ): (3.3)

For example adding any constant to a random variable or multiplying a random variable by any non-zero

constant does not change its entropy.

Before introducing our next de�nition, let us make a quick notational remark. When it is clear from

context, we will use notation likep(x j y) to denote conditional probability mass functions andp(x) to

denote the marginal probability mass functions, where it is clear from context what random variable(s)

the probabilities are being taken with respect to. To be clear, in the two examples,p(x j y) is short for

P[X = x j Y = y] andp(x) is short forP[X = x]. With this in mind, we now de�ne conditional

entropy, which describes the average uncertainty or surprise in a random variableX , conditionedon

another random variableY .

DEFINITION 7 (Conditional entropy).LetX andY be two jointly distributed discrete random variables.

The conditional (Shannon) entropy ofX givenY is

H (X j Y ) := E
y� pY

[H (X j Y = y)] (3.4)

=
X

y

p(y)
X

x

p(x j y) log
1

p(x j y)
(3.5)

in bits.

In other words, conditional entropy is the entropy of the random variableX j Y = y, averaged over the

values ofy.

An important fact is that entropy can never increase after conditioning on another random variable.

LEMMA 3 (Conditioning cannot increase entropy).H (X j Y ) � H (Y ) with equality if and only ifX

andY are independent.

Intuitively, this is saying that knowing some extra informationY can never increase uncertainty about

X on average.
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Finally, we introduce achain rule for entropy that lets us break up the entropy of a randomvector

H (X; Y ) as the sum of the entropy of a single variableH (X ) plus the conditional entropy of the second

given the �rstH (Y j X ).

LEMMA 4.

H (X; Y ) = H (X ) + H (Y j X ): (3.6)

Applying Lemma 3 to this result gives the following.

LEMMA 5.

H (X; Y ) � H (X ) + H (Y ) (3.7)

with equality if and only ifX andY are independent.

3.1.2 KL divergence

Next, we introduce a measure of the distance between two probability distributions.

DEFINITION 8 (Kullback-Leibler divergence).Let p(x) and q(x) be two probability mass functions.

Then the Kullback-Leibler (KL) divergence betweenp andq is

D(p k q) :=
X

x

p(x) log2
p(x)
q(x)

(3.8)

in bits.

It can be shown thatD(p k q) is a measure of the “inef�ciency” of assuming the distribution isq when

the true distribution isp.

Note that KL divergence lacks some properties we would expect of a distance. In particular, it is not

symmetric and does not satisfy the triangle inequality. Hence it is more appropriate to call it a “diver-

gence” than a true “distance”. Nonetheless, KL divergence does have the important property that it is

always non-negative, and is equal to zero if and only if the two probability distributions are equal.

THEOREM 5 (Gibbs' inequality).

D (p k q) � 0 (3.9)

with equality if and only ifp = q.
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PROOF. Let P := f x 2 X : p(x) > 0g be the support ofp. Then

D(p k q) =
X

x2 P

p(x) log2
p(x)
q(x)

(3.10)

= E
X � p

�
� log2

q(X )
p(X

�
(3.11)

� � log2 E
X � p

�
q(X )
p(X )

�
(3.12)

= � log2

 
X

x2 P

p(x)
q(x)
p(x)

!

(3.13)

= � log2

 
X

x

q(x)

!

(3.14)

� � log2 1 (3.15)

= 0 ; (3.16)

where Equation 3.12 is by Jensen's inequality (Theorem 32) sincex 7! � log2(x) is convex. �

3.1.3 Mutual information

We are now �nally ready to introduce mutual information.

DEFINITION 9 (Mutual information).LetX andY be two jointly distributed discrete random variables.

Then the mutual information betweenX andY is

I (X ; Y ) := D(pXY k pX 
 pY ) (3.17)

=
X

x;y

p(x; y) log2
p(x; y)

p(x)p(y)
: (3.18)

Intuitively, this is a measure of similarity between the joint distributionpXY and the product of the

marginalspX 
 pY , i.e., the distributionif X andY were independent. In other words, it is a measure of

how “close”X andY are to being independent. Indeed, as a direct consequence of the non-negativity

of KL divergence (Theorem 5), we have the following.

THEOREM 6. For any two random variablesX; Y ,

I (X ; Y ) � 0 (3.19)

with equality if and only ifpXY = pX 
 pY , i.e.,X andY are independent.



3.1 SHANNON INFORMATION THEORY 23

Intuitively speaking, random variables that are close to being independent do not carry much information

about each other, and indeed the mutual information is close to zero; on the other hand, random variables

that are far from being independent must be tightly coupled with each other, and the mutual information

between them is high.

The next lemma states that mutual information is symmetric, hence the namemutualinformation, and

provides an alternate interpretation of mutual information in terms ofentropy.

LEMMA 6. For any two random variablesX; Y ,

I (X ; Y ) = I (Y ; X ) (3.20)

= H (Y ) � H (Y j X ) (3.21)

= H (X ) � H (X j Y ) (3.22)

Combining the non-negativity of KL divergence (Theorem 5) and the above result shows thatH (X j

Y ) � H (X ) with equality if and only ifX andY are independent, which is Lemma 3.

Equation 3.21 and Equation 3.22 show that mutual information may alternatively be thought of as how

much the entropy of one variable, sayX , goes downwhen conditioned on a second variableY . Intu-

itively, after seeingY , we have gainedH (X ) � H (X j Y ) = I (X ; Y ) bits of information aboutX

since our uncertainty aboutX has been reduced by that amount.

Next, we show that scaling a variable does not change the mutual information.

LEMMA 7.

I (aX ; Y ) = I (X ; Y ) (3.23)

for anya 6= 0 .
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PROOF.

I (aX ; Y ) = H (aX ) � H (aX j Y ) (3.24)

= H (aX ) � E
y� pY

[H (aX j Y = y)] (3.25)

= H (X ) � E
y� pY

[H (X j Y = y)] (3.26)

= H (X ) � H (X j Y ) (3.27)

= I (X ; Y ) (3.28)

where Equation 3.24 is due to Lemma 6, Equation 3.25 by de�nition of conditional entropy, Equa-

tion 3.26 by Lemma 2 sincex 7! ax is injective fora 6= 0 , Equation 3.27 by de�nition of conditional

entropy, and Equation 3.28 by Lemma 6. �

Note that symmetry of mutual information also impliesI (X ; aY) = I (X ; Y ), or more generally that

I (aX ; bY) = I (X ; Y ) for a; b6= 0 .

Our last property of mutual information states that mutual information between two variables cannot

increase as a result of processing any of the two variables. To state this result, let us �rst make a

de�nition.

DEFINITION 10. Random variablesX; Y; Z are said to form a Markov chain, denotedX ! Y ! Z if

the conditional distribution ofZ depends only onY and is conditionally independent ofX , i.e.,

p(z j y; x) = p(z j y) (3.29)

for all x; y; z.

Intuitively, this is saying that all the “information” fromX andY that can be used to determineZ can be

found inY alone, where the term “information” is being used in a loose sense. Any “information” from

X that can be used to determineZ always passes throughY �rst, and consequently, having conditioned

onY , there is no “information” betweenX andZ , i.e.,X andZ are conditionally independent givenY .

In fact, it can be shown thatX ! Y ! Z if and only if X andZ are conditionally independent given

Y .

With this de�nition in mind, we can now state the data processing inequality.
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THEOREM 7 (Data processing inequality).SupposeX ! Y ! Z form a Markov chain. Then

I (X ; Y ) � I (X ; Z ): (3.30)

For example, ifZ = f (Y ) is a deterministic function ofY , thenX ! Y ! Z = f (X ) form a Markov

chain and so the data processing inequality implies

I (X ; Y ) � I (X ; f (Y )) : (3.31)

Finally, we de�ne a conditional variant of mutual information, following the same ideas as for the

de�nition of conditional entropy.

DEFINITION 11 (Conditional mutual information).LetX; Y; Z be three jointly distributed discrete ran-

dom variables. The conditional mutual information betweenX andY givenZ is

I (X ; Y j Z ) := E
z� pZ

[I (X j Z = z; Y j Z = z)] (3.32)

=
X

z

p(z)
X

x

X

y

p(x; y j z) log
p(x; y j z)

p(x j z)p(y j z)
(3.33)

In other words, conditional mutual information is the mutual information between the random variables

X j Z = z andY j Z = z, averaged over all possible values ofz.

3.1.4 Differential entropy

All the above quantities can be de�ned for continuous random variables by replacing sums with integrals,

and probability mass functions with probability density functions. In the continuous case, it is most

natural to take logarithms basee instead of base 2 as we were doing previously, which leads to entropy

and related quantities to be given innatsinstead of bits. The continuous analogue for Shannon entropy

is differential entropy.

DEFINITION 12 (Differential entropy).LetX be acontinuousrandom variable/vector with probability

densityfunctionf (x) and supportX := f x : f (x) > 0g. Then the differential entropy ofX is

h(X ) :=
Z

X
f (x) ln

1
f (x)

dx (3.34)

in nats.
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Note that we use lower caseh for differential entropy, to distinguish it from Shannon entropyH .

Great care needs to be taken when manipulating differential entropy as some properties that hold for

Shannon entropy do not necessarily carry over to differential entropy. As an example, let us compute

the differential entropy of a random variableX taking values uniformly over the real interval[0; a] for

a > 0. ThenX has p.d.f.f (x) = 1 =aover[0; a] and so its differential entropy is

h(X ) =
Z a

0

1
a

ln a dx = ln a: (3.35)

Observe that takinga = 1 tells us that that the differential entropy of a uniform[0; 1] random variable is

zero. Hence, unlike Shannon entropy, a differential entropy of zero doesnot correspond to a determinis-

tic random variable. Determinism occurs in the limit asa ! 0 in which case the differential entropyln a

limits to �1 . This also shows thatdifferential entropy can be negative, unlike Shannon entropy. More

generally, taking any0 < a < 1 will result in H (X ) = ln a < 0. Compare these observations with

Lemma 1. The reason that Lemma 1 no longer holds is because the proof relied on the probability mass

function satisfyingp(x) � 1 which subsequently implies thatlog2
1

p(x) > 0. However, for a densityf , it

is not necessarily true thatf (x) � 1, and so iff (x) > 1 it is possible for differential entropy to become

negative.

Furthermore observe that scalingX by any positivea 6= 1 changesits differential entropy. Generally,

we have the following result.

LEMMA 8. LetX be a continuous random variable/vector anda 6= 0 . Then

h(aX ) = h(X ) + ln a: (3.36)

PROOF. First assumea > 0. The c.d.f. of the random variableaX is

FaX (x) := P [aX � x] (3.37)

= P
h
X �

x
a

i
(3.38)

= FX

� x
a

�
(3.39)

whereFX is the c.d.f. ofX . Differentiating both sides with respect tox, we obtain that the density of

aX is

f aX (x) =
1
a

f X

� x
a

�
(3.40)
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wheref X is the density ofX . Hence,

h(aX ) = �
Z

1
a

f X

� x
a

�
ln

�
1
a

f X

� x
a

� �
dx (3.41)

= ln a
Z

1
a

f X

� x
a

�
dx �

Z
1
a

f X

� x
a

�
ln f X

� x
a

�
dx (3.42)

= ln a
Z

f X

� x
a

�
d

� x
a

�
�

Z
f X

� x
a

�
ln f X

� x
a

�
d

� x
a

�
(3.43)

= ln a + h(X ): (3.44)

For the casea < 0, the c.d.f. ofaX is given by

FaX (x) := P [aX � x] (3.45)

= P
h
X �

x
a

i
(3.46)

= 1 � FX

� x
a

�
(3.47)

and so the density is

f aX (x) = �
1
a

f X

� x
a

�
: (3.48)

Proceeding with similar steps to the casea > 0 gives the result. �

This is markedly different behaviour to Shannon entropy as the Shannon entropy of a random variable

remains unchanged after applying any injective function to it (see Lemma 2). The one saving grace of

differential entropy is that it is invariant to translations. This can be easily seen by using a change of

variables in the de�nition of differential entropy.

LEMMA 9. LetX be a continuous random variable/vector andc a constant. Then

h(X + c) = h(X ): (3.49)

Finally, let us conclude our discussion on differential entropy with the important example of a normal

random variable. In light of the above result, we will look at normal random variables with mean zero

only.

THEOREM 8. LetX � N (0; � 2). Then

h(X ) =
1
2

ln
�
2�e� 2�

: (3.50)
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PROOF. For the case� = 1 we have

h(X ) = �
Z

R

1
p

2�
exp

�
�

1
2

x2
�

ln
�

1
p

2�
exp

�
�

1
2

x2
��

dx (3.51)

=
1
2

ln 2�
Z

R

1
p

2�
exp

�
�

1
2

x2
�

dx (3.52)

+
1
2

Z

R

1
p

2�
x2 exp

�
�

1
2

x2
�

dx

=
1
2

ln 2� +
1
2

(3.53)

=
1
2

ln 2�e; (3.54)

where Equation 3.53 follows because densities integrate to one, andE[X 2] = � 2 = 1 . For general� ,

the result follows by Lemma 8. �

3.1.5 Differential KL divergence

Because of the many undesirable properties of differential entropy, it is sometimes useful to study KL

divergence instead. Just like differential entropy, this is de�ned by taking the de�nition in the discrete

case and replacing probability mass functions with densities, sums with integrals, and, for convenience,

base 2 logarithms with natural logarithms.

DEFINITION 13 ((Differential) Kullback-Leibler divergence).Let f (x) and g(x) be two probability

densityfunctions. Then the KL divergence betweenf andg is

D(f k g) :=
Z

X
f (x) ln

f (x)
g(x)

dx (3.55)

whereX = f x : f (x) > 0g is the support off .

Unlike differential entropy however, KL divergence is always non-negative even in the continuous case,

due to Jensen's inequality continuing to hold in the continuous case. In other words, Gibbs' inequality

(Theorem 5) continues to hold.

For this reason, instead of studying the entropy of a densityf , it can be useful to instead study the KL

divergence betweenf and a �xed reference density such as the normal density, i.e., the quantity

D
�

f (x)






1

�
p

2�
exp

�
�

1
2� 2 x2

��
� 0: (3.56)
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We will see in Section 6.4.2 that the normal densitymaximisesdifferential entropy over all continuous

random variables with a given variance. Intuitively, having Equation 3.56 close to zero implies thatf

is close to the normal density, and so we might expectf has close to maximum differential entropy;

conversely having large values of Equation 3.56 implies thatf is far from being normal, and so we

might expect that its differential entropy is much lower compared to that of a normal. In fact, as we will

see in Section 6.4.2, if� 2 is chosen to be the variance of (the random variable associated with)f , then

D
�

f (x)






1

�
p

2�
exp

�
�

1
2� 2 x2

��
=

1
2

ln
�
2�e� 2�

� h(f ): (3.57)

In other words Equation 3.56 reduces to the difference between the differential entropy off to that of

the corresponding normal with the same variance. For this reason, KL divergence is often calledrelative

entropy; it measures the entropy off , relativeto another reference distribution.

Note that in the discrete case when the support is �nite, one has an analogous statement when taking the

KL divergence with respect to the uniform distribution over the support.

3.1.6 Differential mutual information

Finally, we can extend mutual information to the continuous case in the obvious way.

DEFINITION 14. The mutual information between two continuous random variables/vectorsX andY

is

I (X ; Y ) = D(f XY k f X 
 f Y ) (3.58)

=
ZZ

f XY (x; y) ln
f XY (x; y)

f X (x)f Y (y)
dx dy: (3.59)

Because KL divergence is non-negative in the continuous case, so too is mutual information, with mutual

information being zero if and only if the two variables are independent, i.e., Theorem 6 continues to hold

for the continuous case.

Additionally, all the properties that that mutual information satis�ed in the discrete case continue to

carry over to the continuous case. Namely, (differential) mutual information is symmetric,I (X ; Y ) =

I (Y ; X ). It is the reduction in entropy after conditioning on the second variable,I (X ; Y ) = H (X ) �

H (X j Y ). It is invariant to scaling in either variable,I (aX ; bY) = I (X ; Y ) for a; b 6= 0 . Finally, it

continues to satisfy the data processing inequality.
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The upshot of all this is that KL divergence, and in particular mutual information, shares the same

properties in both the discrete and continuous cases, and so for the most part we will not make too great

a distinction between the two cases. However, the same is categorically not true for the continuous

analogue of entropy, and so great care must be taken when working with this quantity. This is why we

slightly overload notation and writeD(f k g) andI (X ; Y ) for both the discrete and continuous cases,

but we make a notational distinction between differential entropyh and Shannon entropyH .

3.2 Mutual information generalisation bounds

Having rigorously introduced some foundational concepts in information theory, we are �nally ready to

see how this ties in with deriving generalisation bounds for a learning algorithm. As discussed at the

very beginning of this chapter, the high level idea is to look at

I (Z ; A (Z )) ; (3.60)

the mutual information between the training samplesZ 2 Z m given to the learning algorithmA, and

the hypothesis that the algorithm outputsA(Z ) 2 H . Note thatZ is a random vector consisting ofm

i.i.d. samples from distributionD, and soA(Z ) is also a random variable/vector.

If the mutual information between the two quantities is very low, then we know that they are close

to being independent (see Theorem 6). Intuitively, this means the learnt hypothesisA(Z ) is not very

dependent on the training dataZ , so modifyingZ will not changeA(Z ) too much, and hence the learnt

hypothesis is unlikely to over�t to its training data. On the other hand, if the mutual information is

very high, this suggests the learnt hypothesis is highly sensitive to the input samples, and so it may be

over�tting. These ideas were made formal in the work of Russo and Zou (2016) and Xu and Raginsky

(2017) who showed thatI (Z ; A (Z )) can be used to bound theexpected generalisation error, that is, the

expected difference between the empirical risk and population risk.

THEOREM 9 (Russo and Zou (2016); Xu and Raginsky (2017)).SupposeA : Z m ! H is a (possibly

randomised) learning algorithm, and that the loss function has bounded range, i.e., is of the form` :

H � Z ! [0; 1]. Then

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� �

r
1

2m
I (Z ; A (Z )) : (3.61)
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The mutual information quantity above is assumed to be given in nats, i.e., all logarithms are taken in

basee, even in the discrete casewhere we have previously de�ned all information-theoretic quantities

using base 2. Sincelog2 x = ln x
ln 2 , if we have computedI (Z ; A (Z )) in bits, we can convert it to nats by

multiplying by ln 2.

Let us make a few remarks about Theorem 9. Firstly, note that there is no requirement forY = f 0; 1g,

as was the case for VC theory and compression schemes. Consequently, there is no restriction on what

loss function we use, only that it needs to output values in the range[0; 1].

Secondly, we allow the learning algorithmA to be randomised. In fact, if the feature vectors are con-

tinuous (e.g.,X = Rn ), then the learning algorithmmustbe randomised in order to get non-vacuous

bounds in Theorem 9. This is because in the continuous case,

I (Z ; A (Z )) = h(A(Z )) � h(A (Z ) j Z ) (3.62)

= h(A(Z )) � E
z� pZ

[h(A (Z ) j Z = z)] : (3.63)

However, if A is deterministic, the random variable/vectorA (Z ) j Z = z is deterministic for each

�xed value z and so its differential entropyh(A(Z ) j Z = z) is �1 , hence the mutual information

I (Z ; A (Z )) is in�nite. In the discrete case, this is not a problem because theShannonentropy of a

deterministicdiscreterandom variable is zero and so

I (Z ; A (Z )) = H (A(Z )) : (3.64)

Indeed we will see these observations play out in Chapter 6.

On the �ip side, note that it is possible forI (Z ; A (Z )) = 0 . As we have seen before, mutual information

is always non-negative, and is zero if and only if the two arguments, hereZ andA(Z ), are independent

(Theorem 6). For this to be the case, the learning algorithm must ignore the inputsZ that it is given.

For example, a “learning” algorithm that always outputs the same hypothesish, regardless of its inputs

Z , would haveI (Z ; A (Z )) = I (Z ; h) = 0 . Theorem 9 then implies the expected generalisation error

is zero, but clearly this is a terrible learning algorithm, if it can be called a learning algorithm at all.

There is no contradiction here, however. Although the empirical and population risks are the same

(in expectation), the population riskR(h) is in general terrible, andR(h) is what we ultimately want

to minimize. This example shows thathaving low (expected) generalisation error is not suf�cient to

guarantee a good learning algorithm; we also require one of eitherR(A(Z )) or bRZ (A (Z )) to be low

as well.
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Finally, if A is an ERM and the realisability assumption holds, thenbRZ (A (Z )) = 0 and so Theorem 9

reduces to

E
Z

[R(A (Z ))] �

r
1

2m
I (Z ; A (Z )) : (3.65)

By Markov's inequality (Theorem 33), this then implies

P [R(A(Z )) � " ] �

r
1

2m" 2 I (Z ; A (Z )) : (3.66)

Letting � :=
q

1
2m" 2 I (Z ; A (Z )) and solving form implies that

P [R(A(Z )) � " ] � �; (3.67)

or equivalently that

P [R(A(Z )) < " ] � 1 � �; (3.68)

for

m �
I (Z ; A (Z ))

2� 2"2 : (3.69)

Note that Equation 3.68 is in the form of the de�nition for PAC learning (see Equation 2.6) and so

Equation 3.69 gives us sample complexity bounds for the learning algorithmA. Unfortunately, the

dependence on� and" is suboptimal, since VC theory already tells us that the sample complexity of

any ERMA is no more thanO
�

d log(1=")+log(1 =� )
"

�
(see Equation 2.11). This is because Theorem 9

only provides boundsin expectation, and so applying Markov's inequality produces quite weak bounds.

In this sense, the expected generalisation error bounds are qualitatively weaker compared to the PAC

learning sample complexity bounds attained by VC theory. On the other hand, this is the price to pay

for generality — the framework here allows for arbitraryY, more general loss functions`, and works

for anyalgorithmA, even randomised ones.

Some recent work has showed that if we adifferentmeasure of information such as Sibson's� -mutual

informationI � (Z ; A (Z )) , a generalisation of mutual information (Sibson, 1969; Verdú, 2015), or max-

imal leakage (Issa et al., 2016), then thiscan be used to obtainhigh probability bounds, that is, sam-

ple complexity bounds that are polylogarithmic in1=� instead of polynomial in1=� (Esposito et al.,

2020a,b). For example, Esposito et al. (2020b) show that Sibson's� mutual information can be used to

derive ahigh probabilitybound that results in sample complexity

m �
I � (Z ; A (Z )) + ln 2 + �

� � 1 log 1
�

2"2 : (3.70)
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Unfortunately, computing� mutual information is much more dif�cult as many of the natural properties

that mutual information satis�es do not carry over. In particular,� mutual information is not symmetric

and does not satisfy a chain rule (Steinke, 2023).

3.3 Individual sample mutual information generalisation bounds

We have seen thatI (Z ; A (Z )) is in�nite when Z is continuous andA deterministic. This is highly

undesirable, as many learning algorithms fall into this category despite having good generalisation guar-

antees. For example, the SVM algorithm withX = Rn falls into this category. This is despite the fact

that, in the realisable case, SVM is an ERM and contains a compression scheme, so we can bound its

sample complexity using either the results of VC theory or compression schemes.

There are a few ways to address this issue. An idea explored in Bu et al. (2020) is to look at the mutual

information betweenonesampleZ (i ) and the output hypothesisA(Z ), i.e., the quantity

I (Z (i ) ; A (Z )) ; (3.71)

instead of the mutual information between theentiresample and the output hypothesisI (Z ; A (Z )) .

The advantage of this approach is that even ifZ is continuous andA is a deterministic function ofZ ,

it is often the case thatA is not a deterministic function of a single sampleZ (i ) alone. This is because,

as long as the algorithm is making use of the otherZ (j ) for j 6= i , thoseZ (j ) induce randomness in the

algorithmA, when viewed as takingZ (i ) alone as input. In this case,I (Z (i ) ; A (Z )) is not necessarily

in�nite anymore. We will see an example of this distinction playing out in Chapter 6.

The following result shows that, what is essentially the mean ofI (A (Z ); Z (i ) ) over all samplesi , can

be used to bound the expected generalisation error.

THEOREM10 (Bu et al. (2020)).SupposeA : Z m ! H is a (possibly randomised) learning algorithm,

and that the loss function satis�es` : H � Z ! [0; 1]. Then

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� �

1
m

mX

i =1

r
1
2

I (Z (i ) ; A (Z )) : (3.72)
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3.4 Conditional mutual information generalisation bounds

Steinke and Zakynthinou (2020) explore an alternative way to address the problem ofI (Z ; A (Z )) being

in�nite. The idea is to look at aconditionalmutual information quantity, where the conditioning is done

in a clever way so that the conditional mutual information is always �nite.

More speci�cally, we are given2m i.i.d. sampleseZ 2 Z 2� m instead of the usualm. It will be helpful to

think of this asm pairs of samples. From each of the these pairs, one of the two data points are picked

uniformly at random. LetS 2 f 0; 1gm be a random variable denoting them indices of which data point

is being picked, and leteZS 2 Z m denote the selectedm points. See Figure 3.2 for an illustration.

0

1

ZS, S = (0, 1, 1, 1, 0, 1)

Z̃

FIGURE 3.2. Illustration of the conditional mutual information framework. The two
rows of squares representseZ with m = 6 . The red squares representeZS for a particular
choice ofS.

We look at the mutual information betweenA( eZS), the output hypothesis of the learning algorithm

when given the selectedm points, andS, the indices used to select the points, conditioned on the2m

sampleseZ , i.e., the quantity

I
�

S; A ( eZS) j eZ
�

: (3.73)

Intuitively, the above quantity measures how well we candistinguishthe m data points the learning

algorithm was trained on from them “spurious” data points which were not used in the algorithm,

by looking at the output hypothesis of the learning algorithm. In contrast, the (unconditional) mutual

information I (A (Z ); Z ) measures how well we canreconstructthe input to the learning algorithm,

by looking at the output hypothesis. Importantly, the conditional variant is always bounded in that

I
�

S; A ( eZS) j eZ
�

� m ln 2 nats.

This quantity can be used to bound the expected generalisation error, in a similar way to Theorem 9.
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THEOREM 11 (Steinke and Zakynthinou (2020)).SupposeA : Z m ! H is a (possibly randomized)

learning algorithm, and that the loss function satis�es` : H � Z ! [0; 1]. Then

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� �

r
2
m

I
�

S; A ( eZS) j eZ
�

(3.74)

Note that of course the generalisation bound is still vacuous whenI
�

S; A ( eZS) j eZ
�

is close to its

maximum valuem ln 2. This is unavoidable because some learning algorithms indeed over�t and so the

generalisation error necessarily must be vacuous in that case. However, Steinke and Zakynthinou (2020)

illustrate with the example of learning threshold functions overR that I
�

S; A ( eZS) j eZ
�

can be�(1)

even whenI (Z ; A (Z )) is in�nite.

3.5 Learning algorithms with low information

We have seen that a variety of information-theoretic quantities can be used to bound the expected gen-

eralisation error of a learning algorithm. However, are there simple ways to compute these information-

theoretic quantities? For certain classes of learning algorithms, bounds on these quantities are known.

3.5.1 Differentially private algorithms

One such class of learning algorithms are those that areprivacy-preservingin the sense that we de�ne

below.

DEFINITION 15 (Differential privacy (Dwork et al., 2006)).A randomized learning algorithmA :

Z m ! H is ("; � )-differentially privateif for any two training setsZ; Z 0 2 Z m that differ in a sin-

gle element (i.e.Z (i ) 6= Z 0(i ) for somei , andZ (j ) = Z 0(j ) for all j 6= i ) and for any set of hypotheses

H � H ,

P [A (Z ) 2 H ] � exp(" )P
�
A (Z 0) 2 H

�
+ �: (3.75)

Intuitively, differential privacy is saying that if one of the training data points is changed, the distribution

in the hypotheses that the learning algorithm outputs will not be changed by too much. It is natural to ex-

pect that such learning algorithms also have low mutual information because if changing the inputs toA

does not signi�cantly affect its output, then the input does not provide much information in determining

the output either.
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Indeed, it has been shown (McGregor et al., 2010; Bun and Steinke, 2016) that ifA is a randomised

differentially private learning algorithms with� = 0 , then

I (Z ; A (Z )) �
1
2

"2m: (3.76)

Furthermore, Steinke and Zakynthinou (2020) establish the analogous result for the conditional variant,

i.e.,

I
�

S; A ( eZS) j eZ
�

�
1
2

"2m: (3.77)

3.5.2 Compression schemes

Recall from Section 2.6 that a learning algorithmA : Z m ! H has a compression scheme of sizek if

only k of its m inputs are used in determining the output hypothesis. This is another situation where we

might expect to get low information since not all the information in the inputs are used by the algorithm.

Indeed, Steinke and Zakynthinou (2020) show that for such algorithms,

I
�

S; A ( eZS) j eZ
�

� k ln(2m): (3.78)

These two examples also show that the conditional mutual information approach to generalisation

bounds encompass existing techniques. Dwork et al. (2015) show directly (i.e., without using the infor-

mation theoretic framework described here) that differentially private algorithms generalise well in the

context of adaptive data analysis, and of course we saw in Section 2.6 that algorithms which admit a

compression scheme also generalise well.



CHAPTER 4

Applications to learning linear threshold functions

We have seen that various information-theoretic quantities can be used to derive expected generalisation

error bounds. For certain classes of learning algorithms, such as those that admit compression schemes,

or are differentially private, analytic upper bounds on the information-theoretic quantities exist, as dis-

cussed in Section 3.5.

In this chapter, we will derive novel bounds on the discussed information-theoretic quantities for an

algorithm that learns linear threshold functions (LTFs) over the Boolean hypercube. The main idea is

that LTFs are uniquely characterized byn + 1 parameters known as theChow parameters, and we can

easily estimate these parameters by computing a series of sample means. Our main result in this chapter

is Theorem 14 which bounds the expected generalisation error of this algorithm byO
� q

n log m
m

�
.

4.1 Boolean functions and their Fourier expansion

We now formalise the above discussions by introducing Boolean functions and some of their analysis.

Speci�cally, we introduce theFourier expansion, an alternative way to represent Boolean functions.

The material in this section is taken from Chapter 1 of O'Donnell (2021) and summarised here for

completeness. The reader already familiar with the text may wish to skip to Section 4.2.

A Boolean function is a functionf : f� 1; 1gn ! f� 1; 1g. As an example, a Boolean function for

n = 2 could be the function de�ned by

f (+1 ; +1) = +1 ;

f (� 1; +1) = +1 ;

f (+1 ; � 1) = +1 ;

f (� 1; � 1) = � 1;

37
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which simply takes the maximum of its two inputs. Interestingly, this functionf has another represen-

tation:

f (x1; x2) =
1
2

+
1
2

x1 +
1
2

x2 �
1
2

x1x2: (4.1)

It is easy to check that, when evaluated on inputs(x1; x2) 2 f� 1; 1g2, the two representations are

equivalent. Moreover, it can be shown that the above representation is unique.

The form in Equation 4.1 is known as amultilinear polynomial— when viewed as a function of any

single variablex i alone and treating all other variables as constants, the expression becomes linear.

Perhaps surprisingly,any Boolean functionf : f� 1; 1gn ! f� 1; 1g can be uniquely expressed as a

multilinear polynomial overn variables.

To see why, we need to consider a more general class of functions, thereal-valued Boolean functions

f : f� 1; 1gn ! R. The set of all such functions forms a vector spaceV over R with dimension

dim V = 2 n . Informally, this is because we may treat each functionf as a2n -dimensional “vector”,

where each component of the vector corresponds to whatf evaluates to for a particular input; adding

two vectors together corresponds to adding the two corresponding functions together, and multiplying a

vector by a scalar corresponds to multiplying the corresponding function by a scalar.

Notice that for any �xeda = ( a1; � � � ; an ) 2 f� 1; 1gn the polynomial

1a(x) :=
nY

i =1

1
2

(1 + ai x i ) (4.2)

is an indicator function that outputs 1 whenx = a and 0 otherwise. Hencef can be written as

f (x) =
X

a2f� 1;1gn

f (a)1a(x) (4.3)

=
X

a2f� 1;1gn

1
2n f (a)

nY

i =1

(1 + ai x i ) (4.4)

=
X

a2f� 1;1gn

1
2n f (a)

X

S� [n]

Y

i 2 S

ai x i (4.5)

=
X

S� [n]

X

a2f� 1;1gn

1
2n f (a)

Y

i 2 S

ai

Y

i 2 S

x i (4.6)

=
X

S� [n]

0

@
X

a2f� 1;1gn

1
2n f (a)� S(a)

1

A � S(x) (4.7)
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where

� S(x) :=
Y

i 2 S

x i (4.8)

is theparity functionof the bits(x i ) i 2 S and a multilinear polynomial. Equation 4.7 is a linear com-

bination of multilinear polynomials which is itself a multilinear polynomial, hence showing that any

f : f� 1; 1gn ! R can be expressed as a multilinear polynomial. Moreover,(� S)S� [n] must form a

basis forV because Equation 4.7 shows that everyf can be expressed as a linear combination of� S of

which there are2n many, anddim V = 2 n . Consequently this shows that the coef�cient in front of� S

is unique, and hence the multilinear polynomial representation off is unique.

This unique multilinear polynomial representation off has a name: the “Fourier expansion” off , and

the coef�cients in front of� S are the “Fourier coef�cients” off , denotedbf (S). Hence we have proved

the following.

THEOREM 12. Every functionf : f� 1; 1gn ! R has unique Fourier expansion

f (x) =
X

S� [n]

bf (S)� S(x) (4.9)

where the Fourier coef�cients are

bf (S) =
X

x2f� 1;1gn

1
2n f (x)� S(x) = E

X �f� 1;1gn
[f (X )� S(X )] : (4.10)

The notationX � f� 1; 1gn means thatX is distributed uniformly over the setf� 1; 1gn . Equivalently,

X is a vector ofn independent Rademacher� 1 random variables.

In particular, this shows thatBooleanfunctionsf : f� 1; 1gn ! f� 1; 1g, a special case of real-valued

Boolean functions, have unique Fourier expansion. Crucially, this means we can characterise them using

their Fourier coef�cientsbf (S), instead of the more traditional characterisation using their truth tables,

i.e., a list of the valuesf (x) for all possiblex 2 f� 1; 1gn .

At �rst glance, this seems a bit pointless, as there are2n many Fourier coef�cientsbf (S), one for each

subsetS � [n], which is just as many values as we would need to list out in the truth table representation

of f . However, for certain classes of Boolean functions, namely linear threshold functions and more

generally polynomial threshold functions, such functions are entirely determined by only a very small

number of Fourier coef�cients; hence to learn such functions, it suf�ces to only learn those particular

Fourier coef�cients. We will explore this idea in the current chapter.
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For other classes of Boolean functions, it can also be shown that most of the large Fourier coef�cients

are concentrated on a small number of subsets, and learning only those Fourier coef�cients allows us to

learn the function to suf�ciently high accuracy. We will explore this idea in Chapter 5.

4.2 Linear threshold functions and the Chow parameters

A linear threshold function is any Boolean function which can be represented as a linear functionx 7!

w0 + wT x, then taking the sign of the output.

DEFINITION 16. A linear threshold function (LTF) is a Boolean functionf : f� 1; 1gn ! f� 1; 1g such

that

f (x) = sgn(w0 + w1x1 + � � � + wnxn ); (4.11)

for w0; � � � ; wn 2 R.

As alluded to above, LTFs are special in that they are entirely determined by only a small number of

Fourier coef�cients, namely thosebf (S) such thatjSj � 1. This result is known as Chow's theorem,

which was proved independently by Chow (1961) and Tannenbaum (1961).

THEOREM 13 (Chow's theorem (Chow, 1961; Tannenbaum, 1961; O'Donnell, 2021)).Supposef; g :

f� 1; 1gn ! f� 1; 1g are two LTFs. Ifbf (S) = bg(S) for all jSj � 1 thenf = g.

We will prove this theorem in Section 4.5. In light of this result, we can learn LTFs by only learning

bf (; ); bf (f 1g); � � � ; bf (f ng), which we will abuse notation slightly and write asbf (0); bf (1); � � � ; bf (n)

respectively. These are often referred to as the “Chow parameters” off . How can the Chow parameters

be learnt?

Suppose we havem i.i.d. samplesX (1) ; � � � ; X (m) , each drawn uniformly fromf� 1; 1gn , and their as-

sociated labelsY (1) ; � � � ; Y (m) . Sincebf (S) = E[f (X )� S(X )], we in particular havebf (; ) = E[f (X )]

and bf (j ) = E[f (X )X j ] for j 2 f 1; � � � ; ng. We can approximate these quantities via the sample mean

b� 0 :=
1
m

mX

i =1

Y (i ) ; (4.12)

b� j :=
1
m

mX

i =1

Y (i )X (i )
j ; j 2 f 1; � � � ; ng: (4.13)
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By the weak law of large numbers (Theorem 30), these estimates converge in probability to their ex-

pected value asm ! 1 which are precisely the Chow parameters. In other words we have

b� j
P�! bf (j ); j 2 f 0; � � � ; ng: (4.14)

Of course, for any �nitem, the estimates are not in general exactly equal to the Chow parameters, so

Chow's theorem does not apply to the estimated Chow parameters and the corresponding function with

those Fourier coef�cients is not necessarily a linear threshold function. Furthermore, because Chow's

theorem does not apply, there is no guarantee that the function with such Fourier coef�cients is unique,

as onlyn + 1 out of the2n Fourier coef�cients are speci�ed. What is more, this function may not even

output values inf� 1; 1g, but instead output values inR.

Fortunately, we will see in Section 4.6 that there is an algorithm that, given approximate Chow parame-

ters, can construct an LTF that is close to the true LTF, provided the Chow parameters can be estimated

to suf�ciently high accuracy as will be the case for large enoughm.

4.3 Mutual information bound

We will now turn to our information-theoretic framework to derive generalisation bounds for our algo-

rithm that learns an LTF through approximating the Chow parameters. Formally, our algorithm takes as

input Z = (( X (1) ; Y (1) ); � � � ; (X (m) ; Y (m) )) as described above and computesb� := ( b� 0; � � � ; b� n ) as

in Equation 4.12 and Equation 4.13. This is then fed into a “black box”A(b� ), which we will discuss in

Section 4.6, that outputs an LTF corresponding to the approximate Chow parametersb� .

Our main result of this chapter, stated below, is a bound on the expected generalisation error of this

algorithm.

THEOREM 14 (Our result ). The Chow parameter LTF learnerA described above has expected gener-

alisation error
�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� � O

 r
n logm

m

!

: (4.15)

This result is derived by using the mutual information framework described in Section 3.2 and bounding

the quantityI (Z ; A (b� (Z ))) . We will now go through the details of proving this statement.
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First, note that by the data processing inequality (Theorem 7), we have

I (Z ; A (b� (Z ))) � I (Z ; b� (Z )) : (4.16)

But since the feature spaceX = f� 1; 1gn is discrete and the learning algorithmb� deterministic, we

have

I (Z ; b� (Z )) = H (b� ); (4.17)

by the arguments made in Equation 3.64.

This can be further simpli�ed since

H (b� ) �
nX

j =0

H (b� j ) (4.18)

=
nX

j =0

H (mb� j ) (4.19)

by Lemma 5 and Lemma 2 respectively. Note thatmb� j are binomial random variables withm trials

and success probability equal to P
X �f� 1;1gn

[f (X ) = 1] for j = 0 and P
X �f� 1;1gn

[f (X )X j = 1] for

j 2 f 1; � � � ; ng.

Unfortunately, there is no exact form for the entropy of a binomial random variable. One way to get

around this issue is to settle for approximations or asymptotic analyses of the entropy instead. A very

natural idea then is to note that by the central limit theorem (Theorem 31), binomial random variables

(appropriately scaled) converge in distribution to a normal distribution asm ! 1 . This leads us

to suspect that there might be some relationship between the differential entropy of a normal random

variable and the Shannon entropy of a binomial random variable, at least asymptotically.

In the continuouscase, we will show later on (see Theorem 27) that thedifferential entropy of any

continuous random variable is upper bounded by that of a normal having the same variance. We will

now show that an analogous result is also true in the discrete case.

The following is an argument by Massey (1988). LetX be a discrete random variable taking integer

values (e.g. a binomial random variable) and letp(k) := P[X = k]. De�ne the continuousrandom

variable eX as the random variable having densityf eX (x) = p(k) wheneverx 2 (k � 1
2 ; k + 1

2 ] for every

k 2 Z. Clearlyh( eX ) = H (X ) by de�nitions of differential and Shannon entropy. However, note that

since eX is now continuous, we can boundh( eX ) using Theorem 27, which then gives us a bound on
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H (X ) as well. To do so, we need to compute the variance ofeX , which we will do by computing its �rst

and second moments. The �rst moment is

E[ eX ] =
Z

R
xf X 0(x) dx (4.20)

=
X

k2 Z

Z k+ 1
2

k� 1
2

xp(k)dx (4.21)

=
X

k2 Z

p(k)
1
2

" �
k +

1
2

� 2

�
�

k �
1
2

� 2
#

(4.22)

=
X

k2 Z

p(k)
1
2

[2k] (4.23)

= E[X ]: (4.24)

Similarly, the second moment is

E[ eX 2] =
X

k2 Z

Z k+ 1
2

k� 1
2

x2p(k)dx (4.25)

=
X

k2 Z

p(k)
1
3

" �
k +

1
2

� 3

�
�

k �
1
2

� 3
#

(4.26)

=
X

k2 Z

p(k)
1
3

�
3k2 +

1
4

�
(4.27)

= E[X 2] +
1
12

: (4.28)

Hence,

Var[ eX ] = E[X 2] +
1
12

� E[X ]2 = Var[ X ] +
1
12

: (4.29)

The signi�cance of the1
12 term is that it is the variance of a uniform distribution over an interval of size

1. In fact, we can derive the above result in a different way that more clearly demonstrates this idea.

Notice that the distribution ofeX can be written asU((X � 1
2 ; X + 1

2 ]). In particular, this implies

E[ eX j X ] = X: (4.30)

Then by the law of total expectation,

E[ eX ] = E[E[ eX j X ]] = E[X ]; (4.31)
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but also, by the law of total variance,

Var [ eX ] = E[Var [ eX j X ]] + Var [ E[ eX j X ]] (4.32)

= E
�

1
12

�
+ Var [ X ] (4.33)

where the �rst term comes from the fact thateX j X is uniform on an interval of length 1.

Finally, we can apply Theorem 27 to bound the differential entropy ofeX , giving us the following result.

THEOREM 15. LetX be a integer-valued discrete random variable with variance� 2. Then

H (X ) <
1
2

ln
�

2�e
�

� 2 +
1
12

��
: (4.34)

Moreover, ifX � Binomial(m; p) thenVar[X ] = mp(1 � p) � m=4 and so

H (X ) <
1
2

ln
�

2�e
�

m
4

+
1
12

��
: (4.35)

Applying this to our original problem of the Chow estimates, we obtain

I (Z ; b� (Z )) =
nX

j =0

H (mb� j ) <
n + 1

2
ln

�
2�e

�
m
4

+
1
12

��
(4.36)

= O (n logm) : (4.37)

Combining this with Equation 4.16 and Theorem 9, gives us the desired result of Theorem 14.

4.4 Conditional mutual information bound

In this section we explore if we can get a better bound by using the conditional mutual information

framework (Steinke and Zakynthinou, 2020) discussed in Section 3.4.
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We have,

I
�

S; b� ( eZS) j eZ
�

:= E
ez�D 
 2m

h
I (Sj eZ = ez; b� ( eZS)j eZ = ez)

i
(4.38)

= E
ez�D 
 2m

[I (S; b� (ezS))] (4.39)

= E
ez�D 
 2m

[H (b� (ezS)) � H (b� (ezS)jS)] (4.40)

= E
ez�D 
 2m

�
H (b� (ezS)) � E

s�f� 1;1gn
[H (b� (ezS)jS = s)]

�
(4.41)

= E
ez�D 
 2m

[H (b� (ezS)) � 0] (4.42)

�
nX

j =0

E
ez�D 
 2m

[H (b� j (ezS))] (4.43)

=
nX

j =0

E
ez�D 
 2m

[H (mb� j (ezS))] : (4.44)

where Equation 4.40 is by Lemma 6, Equation 4.42 is becauseb� is deterministic, Equation 4.43 is by

Lemma 5, and Equation 4.44 is by Lemma 2.

Let ez 2 Z 2� m be �xed and write

ez =

0

@(ex(0;1) ; ey(0;1)) � � � (ex(0;m) ; ey(0;m) )

(ex(1;1) ; ey(1;1)) � � � (ex(1;m) ; ey(1;m) )

1

A (4.45)

so thatmb� j (ezS) can be expressed as

mb� j (ezS) =
nX

i =1

ey(Si ;i ) ex(Si ;i )
j (4.46)

for j 2 f 1; � � � ; mg and similarly for the casej = 0 . Now, for thosei such thatey(0;i ) ex(0;i )
j = ey(1;i ) ex(1;i )

j ,

the random value ofSi does not affect the corresponding summand. The randomness inS only affectsi

for which ey(0;i ) ex(0;i )
j 6= ey(1;i ) ex(1;i )

j and so

mb� j (ezS) �
�
�
�
n

i 2 [m] : ey(0;i ) ex(0;i )
j = ey(1;i ) ex(1;i )

j = 1
o�

�
�

�
�
�
�
n

i 2 [m] : ey(0;i ) ex(0;i )
j = ey(1;i ) ex(1;i )

j = � 1
o�

�
�

+ Binomial
� �

�
�
n

i 2 [m] : ey(0;i ) ex(0;i )
j 6= ey(1;i ) ex(1;i )

j

o�
�
� ;

1
2

�
: (4.47)
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The �rst two lines in the right hand side are constants, which does not affect the entropy ofmb� j (ezS).

By our work from the previous section (in particular Equation 4.35), we get

H (mb� j (ezS)) <
1
2

ln
�

2�e
�

cj (ez)
4

+
1
12

��
(4.48)

where we de�ne

cj (ez) :=
�
�
�
n

i 2 [m] : ey(0;i ) ex(0;i )
j 6= ey(1;i ) ex(1;i )

j

o�
�
� : (4.49)

Hence, from Equation 4.44,

I
�

S; b� ( eZS) j eZ
�

<
n + 1

2
ln(2�e ) +

1
2

nX

j =0

E
ez�D 
 2m

�
ln

�
cj (ez)

4
+

1
12

��
: (4.50)

Then by Jensen's inequality,

I
�

S; b� ( eZS) j eZ
�

<
n + 1

2
ln(2�e ) +

1
2

nX

j =0

ln
�

E
ez�D 
 2m

�
cj (ez)

4
+

1
12

��
: (4.51)

But since the samples inez are i.i.d., we have

E
ez�D 
 2m

[cj (ez)] = m P
x;x 0�f� 1;1gn

�
f (x)x j 6= f (x0)x0

j

�
=: mpf

j (4.52)

where the probability is taken over two i.i.d. samplesx andx0. Hence we get

I
�

S; b� ( eZS) j eZ
�

<
n + 1

2
ln(2�e ) +

1
2

nX

j =0

ln

 
pf

j

4
m +

1
12

!

: (4.53)

Using the very loose boundpf
j � 1 we get

I
�

S; b� ( eZS) j eZ
�

<
n + 1

2
ln(2�e ) +

1
2

nX

j =0

ln
�

m
4

+
1
12

�
= O(n logm) (4.54)

which recovers the same (asymptotic) bound as we got using the mutual information based analysis in

the previous section, and hence resulting in the same (asymptotic) expected generalisation error bound

of O
� q

n log m
m

�
by Theorem 11.

However, Equation 4.53 allows us to perform a more �ne-grained analysis that is based on the behaviour

of the particular functionf . An interesting direction for further work could be to identify classes of LTFs

for which this analysis results in tighter bounds.
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4.5 Proof of Chow's theorem

In this section, we will prove Chow's theorem (Theorem 13), which is the key result in motivating this

line of work. Again, the material in this section is taken from O'Donnell (2021) and is summarised here

for completeness.

First, we introduce an inner product between pairs of functions.

DEFINITION 17. We de�ne an inner producth�; �i on pairs of functionsf; g : f� 1; 1gn ! R by

hf; g i :=
X

x2f� 1;1gn

1
2n f (x)g(x) = E

X �f� 1;1gn
[f (X )g(X )] : (4.55)

The inner product is de�ned in such a way because this results in the bases� S beingorthonormal.

THEOREM 16. The2n parity functions� S : f� 1; 1gn ! f� 1; 1g form an orthonormal basis forV ,

i.e.,

h� S; � T i = 1 f S = Tg (4.56)

PROOF. SupposeS 6= T. LettingS4 T := ( S n T) [ (T n S) 6= ; denote the symmetric difference

between two sets, we have

� S(X )� T (X ) =
Y

i 2 S

X i

Y

i 2 T

X i (4.57)

=
Y

i 2 S\ T

X 2
i

Y

i 2 S4 T

X i (4.58)

=
Y

i 2 S4 T

X i : (4.59)

Taking expectations we obtain

E[� S(x)� T (X )] = E

2

4
Y

i 2 S4 T

X i

3

5 (4.60)

=
Y

i 2 S4 T

E[X i ]; (4.61)

where Equation 4.61 follows by independence of eachX i . Now, X i are Rademacher� 1 random vari-

ables soE[X i ] = 0 . HenceE[� S(X )� S(T)] = 0 .

On the other hand, ifS = T, then� S(X )� T (X ) = 1 and soE[� S(X )� T (X )] = 1 . �
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Having de�ned an inner product between two functions, we can de�ne thenormof a function.

DEFINITION 18. The (L 2) norm of a functionf : f� 1; 1gn ! R is

kf k2 :=
p

hf; f i =
r

E
X �f� 1;1gn

[f (X )2]: (4.62)

Note that forBoolean-valuedfunctionsf : f� 1; 1gn ! f� 1; 1g we always havekf k2 = 1 sincef (X )2

is identically 1.

We can now prove Plancherel's theorem, which expresses the inner product between two functions as

the sum of the product of the Fourier coef�cients between the two functions.

THEOREM 17 (Plancherel's theorem).For anyf; g : f� 1; 1gn ! R,

hf; g i =
X

S� [n]

bf (S)bg(S): (4.63)

PROOF.

hf; g i = E[f (X )g(X )] (4.64)

= E

2

4

0

@
X

S� [n]

bf (S)� S(X )

1

A

0

@
X

T � [n]

bg(T)� T (X )

1

A

3

5 (4.65)

=
X

S� [n]

X

T � [n]

bf (S)bg(T)E[� S(X )� T (X )] (4.66)

=
X

S� [n]

X

T � [n]

bf (S)bg(T)1 f S = Tg (4.67)

=
X

S� [n]

bf (S)bg(S) (4.68)

where Equation 4.65 is due to the Fourier expansion off andg (Theorem 12), Equation 4.66 is due to

linearity of expectation, and Equation 4.67 is due to the orthonormality of� S (Theorem 16). �

By taking g = f in Plancherel's theorem gives an expression for the norm off . This result is called

Parseval's theorem.

THEOREM 18 (Parseval's theorem).For anyf : f� 1; 1gn ! R,

kf k2
2 = E

X �f� 1;1gn

�
f (X )2�

=
X

S� [n]

bf (S)2: (4.69)
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Note that forBoolean-valuedfunctionsf : f� 1; 1gn ! f� 1; 1g we havekf k2 = 1 and hence

X

S� [n]

bf (S)2 = 1 : (4.70)

We are now ready to prove Chow's theorem (Theorem 13). Recall the statement says that iff; g :

f� 1; 1gn ! f� 1; 1g are two LTFs withbf (S) = bg(S) for all jSj � 1 thenf = g.

PROOF OFCHOW' S THEOREM. (O'Donnell, 2021) Sincef is an LTF, then by de�nition we can

write f (x) = sgn(`(x)) where` : f� 1; 1gn ! R is given by`(x) = w0 + w1x1 + � � � + wnxn . Without

loss of generality, we may assume that` is never 0 onf� 1; 1gn because if it is, we can perturb it slightly

without changing the behaviour off . For anyx 2 f� 1; 1gn we have

f (x)`(x) = sgn(`(x)) `(x) (4.71)

= j`(x)j (4.72)

� g(x)`(x) (4.73)

where the last inequality follows becauseg(x) 2 f� 1; 1g. Hence it follows that

E[f (X )`(X )] � E[g(X )`(X )]: (4.74)

Applying Parseval's theorem (Theorem 18) to both sides of the inequality implies that

X

S� [n]

bf (S)b̀(S) = E[f (X )`(X )] � E[g(X )`(X )] =
X

S� [n]

bg(S)b̀(S): (4.75)

But by assumption,bf (S) = bg(S) for jSj � 1. On the other hand, because`(x) = w0 + w1x1 + � � � +

wnxn , we haveb̀(S) = 0 for jSj > 1. Hence we must have equality in Equation 4.75, i.e.,

E[f (X )`(X )] = E[g(X )`(X )]: (4.76)

At the same time, we also know thatf (x)`(x) � g(x)`(x) from Equation 4.73, but because the expec-

tations are equal, we must have

f (x)`(x) = g(x)`(x) (4.77)

for all x 2 f� 1; 1gn . This then impliesf (x) = g(x) for all x 2 f� 1; 1gn because we assumed`(x) is

never zero onf� 1; 1gn . �
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4.6 From Chow estimates to an LTF

In Section 4.3 and Section 4.4, we successfully derived expected generalisation bounds for learning

LTFs via the Chow parameters. Our analysis was focused on the estimates of the Chow parameters from

the given samples, but we skimmed over the details of how to transform our Chow estimates into an

LTF. In this section, we go over these details.

Recall that the learnt Chow parametersb� are only approximations of the true Chow parametersbf , and

so Chow's theorem does not apply tob� . Moreover even if the theorem were to apply, the proof is

nonconstructive in the sense that it does not tell us how to construct the LTF from its Chow parameters,

which is what we would ultimately like to do.

Fortunately, the following result by O'Donnell and Servedio (2008) shows that given suf�ciently accu-

rate estimates of the Chow parameters, one can indeed construct an LTF that is very close to the true

LTF, though this process is highly nontrivial.

THEOREM19 (O'Donnell and Servedio (2008)).Letf : f� 1; 1gn ! f� 1; 1gbe an LTF andbf its Chow

parameters. There is a randomized algorithmA such that, when given approximate Chow parameters

b� satisfying

kb� � bf k2 � 2� eO(1="2 ) ; (4.78)

outputs the weights-based representation of a LTFh that with probability at least1� � 0overA satis�es

P
X �f� 1;1gn

[f (X ) 6= h(X )] � ": (4.79)

and has time complexity

2
poly

�
2 eO (1 =" 2 )

�

n2 logn log
n
� 0: (4.80)

To use this result, let us use enough samples forb� so that Equation 4.78 is satis�ed with failure prob-

ability no more than�=2 and let us runA until its failure probability is no more than�=2 as well (i.e.

� 0 = �=2). By the union bound, this results in an algorithm that, with failure probability no more than� ,

outputs an LTFh with

P
X �f� 1;1gn

[f (X ) 6= h(X )] � ": (4.81)

In other words, the process of computing the estimatesb� and applying Theorem 19 is a proper PAC

learner for LTFs in the realisable settingunder the uniform Boolean hypercube, i.e.,DX = U (f� 1; 1gn ),
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though of course it is not anef�cient one because the dependence on1=" is doubly exponential. How-

ever, we emphasise that for a �xed" , the time complexity dependence onn is quadratic.

How many samples do we need to satisfy Equation 4.78 with failure probability no more than�
2? For

eachj 2 f 0; 1; � � � ; ng, let us ensureb� j is within an additive(n + 1) � 1=22� eO(1="2 ) to bf (j ) with failure

probability no greater than �
2(n+1) . In other words,

P
h�
�
� b� j � bf (j )

�
�
� � (n + 1) � 1=22� eO(1="2 )

i
� 1 �

�
2(n + 1)

: (4.82)

By Theorem 35 this can be done with no more than

m = O
�

n � 2
eO(1="2 ) � log

n
�

�
(4.83)

samples.

The probability thatall n + 1 estimates are within the prescribed additive range is then

P

2

4
n\

j =0

n�
�
� b� j � bf (j )

�
�
� � (n + 1) � 1=22� eO(1="2 )

o
3

5 (4.84)

= 1 � P

2

4
n[

j =0

n�
�
� b� j � bf (j )

�
�
� > (n + 1) � 1=22� eO(1="2 )

o
3

5 (4.85)

� 1 �
nX

j =0

P
h�
�
� b� j � bf (j )

�
�
� > (n + 1) � 1=22� eO(1="2 )

i
(4.86)

� 1 � (n + 1) �
�

2(n + 1)
(4.87)

= 1 �
�
2

: (4.88)

But if
�
�
� b� j � bf (j )

�
�
� � (n + 1) � 1=22� eO(1="2 ) (4.89)

for all j 2 f 0; � � � ; ng then this implies

nX

j =0

�
b� j � bf (j )

� 2
� 2� eO(1="2 ) (4.90)

and so

kb� � f k2 � 2� eO(1="2 ) (4.91)

as required.
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From Equation 4.83, we see the sample complexity dependence is exponential in1=", but we emphasize

that the dependence onn is near-linear.

4.7 Extension to polynomial threshold functions

The ideas in this chapter can be trivially generalised topolynomial threshold functions(PTFs). A

Boolean-valued functionf is a PTF of degree at mostk if it is expressible as

f (x) = sgn(p(x)) (4.92)

for some real polynomialp(x) of degree at mostk.

Chow's theorem can be generalised to PTFs, with the main ideas in the proof staying the same.

THEOREM 20 (O'Donnell (2021)).Let f; g : f� 1; 1gn ! f� 1; 1g be PTFs of degree at mostk.

Suppose thatbf (S) = bg(S) for all jSj � k. Thenf = g.

Just like we did for the case of LTFs, we can estimate the Fourier coef�cientsb� (S) for jSj � k. A result

by Diakonikolas and Kane (2019) generalises Theorem 19 to the case of PTFs. Speci�cally, it states

there is an algorithm that can approximately reconstructf from b� (S) provided the Fourier estimates

b� (S) are close enough tobf (S).

Already for the case of LTFs we saw that the distance requirementkb� � bf k2 is inversely exponential in

1=". It should be no surprise then that for the general case of PTFs, this distance requirement becomes

staggeringly small and turns out to be inversely proportional to the Ackermann function (Diakonikolas

and Kane, 2019).

However, from our information-theoretic framework, the analysis remains the same as before except

we estimateO(nk ) Fourier coef�cients instead ofn + 1 . Thus the algorithm that estimates the Fourier

coef�cients and reconstructs the PTF has expected generalisation error

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� � O

 r
nk logm

m

!

: (4.93)



CHAPTER 5

Applications to the LMN algorithm

In the previous chapter we saw that we could learn LTFs over the Boolean hypercube via estimating

the Chow parameters. Using the information theory toolkit developed in Chapter 3, we showed that

the expected generalisation error

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� is bounded byO

� q
n log m

m

�
, how-

ever learning to population riskR(A(Z )) < " had sample complexitym exponential in1=" and time

complexity doubly exponential in1=".

In this short chapter, we will show that our analysis can be applied to a well known learning algorithm

by Linial et al. (1993). The high level idea of their algorithm is to estimate the Fourier coef�cients of

functions for which the large coef�cients are provably located on a small number of subsets. Our main

result in this chapter is Theorem 22.

5.1 LMN algorithm

To study this idea in more detail, recall that by Parseval's theorem (Theorem 18),

X

S� [n]

bf (S)2 = 1 (5.1)

for any Boolean-valuedf : f� 1; 1gn ! f� 1; 1g.

The squared Fourier coef�cientsbf (S)2 are called theFourier weights. Suppose that the Fourier weights

are concentrated on a small number of subsetsF , as formalized by the following de�nition.

DEFINITION 19. Let F be a collection of subsets of[n]. We say the Fourier weights off : f� 1; 1gn !

f� 1; 1g are "-concentrated onF if
X

S� [n];S62F

bf (S)2 � ": (5.2)

53
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We know thatf has Fourier expansion

f (x) =
X

S� [n]

bf (S)� S(x): (5.3)

A simple idea by Linial, Mansour, and Nisan (1993) to learnf is the following. We can estimate the

Fourier coef�cientsbf (S) for S 2 F like we did for estimating the Chow parameters. Letb� (S) denote

these estimates. Since the Fourier weight off is " concentrated onF , we know thatbf (S) for S 62 F

is close to zero, so let us use the approximationb� (S) := 0 for S 62 F. We can then construct an

approximate Fourier expansion off given by

g(x) :=
X

S2F

b� (S)� S(x) +
X

S62F

0 � � S(x): (5.4)

The functiong does not necessarily output values inf� 1; 1g so let us take thesignof g instead. These

steps are summarized in Algorithm 1.

Algorithm 1 LMN Algorithm (Linial, Mansour, and Nisan, 1993)

1: Estimate the Fourier coef�cients for eachS 2 F , i.e., compute the sample means

b� (S) :=
1
m

mX

i =1

f (X (i ) )� S(X (i ) ) =
1
m

mX

i =1

Y (i )
Y

j 2 S

X (i )
j : (5.5)

2: Form the functiong : f� 1; 1gn ! R given by

g(x) :=
X

S2F

b� (S)� S(x): (5.6)

3: Output
h(x) := sgn(g(x)) : (5.7)

It turns out that this algorithm is a PAC learner forf , provided we can �nd such a setF .

THEOREM 21 (Linial et al. (1993); O'Donnell (2021)).Supposef : f� 1; 1gn ! f� 1; 1g is "=2 con-

centrated onF . Then, Algorithm 1, when given

m � O
�

jFj
"

log
jFj
�

�
(5.8)

i.i.d. samples overf� 1; 1gn labelled byf , outputs a functionh that with probability at least1 � �

satis�es

P[f (X ) 6= h(X )] � ": (5.9)
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In other words, the LMN algorithm is a proper PAC learner in the realisable settingunder the uniform

Boolean hypercube, i.e.,DX = U (f� 1; 1gn ).

We will prove this result in Section 5.3.

For now, notice that the Fourier coef�cients are approximated in the exact same way as we did for the

Chow coef�cients, except that we do this more generally for sets inF rather than only for those sets

S with jSj � 1. However, the key difference to the LTF case is that although the degree 0 and degree

1 Fourier coef�cients uniquely determine an LTF, those sets arenot an"-concentration for the Fourier

weights. Hence computingg(x) andh(x) as do we here would not be a good approximation for an LTF,

and indeed recovering the LTF from the Chow parameters is a lot more dif�cult as we saw in Section 4.6.

From the perspective of our information-theoretic framework however, the analysis of the LMN algo-

rithm is almost identical to Section 4.3 except that we havejFj estimates instead ofn + 1 and hence

I (Z ; b� (Z )) �
X

S2F

H (mb� (S)) (5.10)

<
jFj
2

ln
�

2�e
�

m
4

+
1
12

��
(5.11)

= O(jFj logm): (5.12)

Let A (b� (Z )) denote the entire LMN algorithm. Again by the data processing inequality

I (Z ; A (b� (Z ))) � I (Z ; b� (Z )) (5.13)

and so by Theorem 9 we arrive at the following result.

THEOREM 22 (Our result ). The LMN algorithmA has expected generalisation error

�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� = O

 r
jFj logm

m

!

(5.14)

whereF are the subsets for which the Fourier weights are"-concentrated on.

5.2 Functions with concentrated Fourier weights

In the previous section we saw that if we could identify setsF for which the Fourier weights off are

"=2 concentrated in, then this could be used in a learning algorithm forf that had sample complexity
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dependenceO
�

jF j
" log jF j

�

�
and expected generalisation errorO

� q
jF j log m

m

�
. This is great news if

we could somehow �nd such a setF . In this section, we summarize some material from O'Donnell

(2021) stating that for various classes of functions,F consists of all sets with low cardinality, i.e.,

F = f S � [n] : jSj � kg for somek, and hencejFj = O(nk ). These results then allow us to very

easily bound the expected generalisation error of the LMN algorithm for these classes of functions via

Equation 5.14.

5.2.1 Functions with low in�uence

The in�uence of coordinatei on a Boolean-valued functionf : f� 1; 1gn ! f� 1; 1g is the probability

that changing thei th bit changes the output of the function,

Inf i [f ] := P
X �f� 1;1gn

�
f (X ) 6= f (X � i )

�
(5.15)

whereX � i meansX but with thei th bit �ipped.

Thetotal in�uence of f : f� 1; 1gn ! f� 1; 1g is the sum of all its in�uences

I [f ] :=
nX

i =1

Inf i [f ]: (5.16)

The following lemma relates the in�uence of a functionf to the size of the sets thatf is " concentrated

on.

LEMMA 10. For anyf : f� 1; 1gn ! f� 1; 1g and any" > 0, the Fourier weights off are " concen-

trated on sets with cardinality up toI [f ]=".

Consider the concept classC of Boolean functions withI [f ] � t . By the above result, every function

in Chas its Fourier weights"=2 concentrated on sets with cardinality up tok = 2 t=" . Hence the LMN

algorithm can be used to learnCby settingF := f S � [n] : jSj � 2t
" g. This achieves sample complexity

m =
nO(t=" )

"
log

nO(t=" )

�
; (5.17)

and expected generalisation error r
nO(t=" ) logm

m
: (5.18)
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Notice that the expected generalisation error here is dependent on" . This is because, in order to learn

to smaller" , we need to setF to contain sets with larger cardinality — in particular the maximum

cardinality of sets inF scales with1=". HencejFj is a function of" and so the expected generalisation

error is also a function of" .

5.2.2 Monotone functions

An important class of functions with low in�uence are the class of monotone functions. Such functions

are quite common and natural, and in particular encompass most “reasonable” voting rules, i.e., where

switching votes from one candidate to the other cannot cause the second to lose the election.

DEFINITION 20. A functionf : f� 1; 1gn ! f� 1; 1g is monotone iff (x) � f (y) wheneverx � y

coordinate-wise.

LEMMA 11. For monotonef ,

I [f ] �

r
2
�

n1=2 + O(n� 1=2) (5.19)

with equality iff is the majority function overn elements.

Consequently, by Lemma 10, monotone functions have Fourier weights"=2 concentrated on sets up to

degree
2
"

 r
2
�

n1=2 + O(n� 1=2)

!

= O
� p

n
"

�
: (5.20)

Hence the LMN algorithm, when learning monotone functions, has sample complexity

nO(
p

n=" )

"
log

nO(
p

n=" )

�
(5.21)

and expected generalisation error no more than
s

nO(
p

n=" ) logm
m

: (5.22)

5.2.3 Functions with low noise sensitivity

Another technique to show Fourier weight concentration is to look at thesensitivityof a function to noise

in its input.
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DEFINITION 21. For f : f� 1; 1gn ! f� 1; 1g, the noise sensitivity off at  , denoted NS [f ] is

the probability thatf (X ) 6= f (Y ) whenX � f� 1; 1gn and Y is formed by �ipping each bit inX

independently with probability .

The following lemma relates a function's noise sensitivity to the size of the subsets that its Fourier

weights are concentrated on.

LEMMA 12. The Fourier weights off : f� 1; 1gn ! f� 1; 1g are 3NS [f ] concentrated on sets with

cardinality at most1= .

Using this result, we can learn functions with low noise sensitivity. Consider the concept classC of

Boolean functionsf having NS [f ] � "=6. Then f is 3NS [f ] � "=2 concentrated on sets with

cardinality at most1= and so the LMN algorithm when used to learnChas sample complexity

O

 
n1=

"
log

n1=

�

!

; (5.23)

and by our result, has expected generalisation error no more than

O

 r
n1= logm

m

!

: (5.24)

5.2.4 Peres' theorem and LTFs revisited

A result by Peres (2021) bounds the noise stability of LTFs and hence by the previous result we can

learn LTFsvia the LMN algorithm.

THEOREM 23 (Peres (2021)).Let f : f� 1; 1gn ! f� 1; 1g be an LTF. Then

NS [f ] � O(
p

 ): (5.25)

By Lemma 12, this implies that LTFs have their Fourier weights"=2 concentrated on sets up to degree

O(1="2) and so learning LTFs via this approach yields a sample complexity of

m =
nO(1="2 )

"
log

nO(1="2 )

�
(5.26)
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and an expected generalisation error of
s

nO(1="2 ) logm
m

: (5.27)

Unfortunately, this is not any better than the approach discussed in Chapter 4 where we learnt LTFs via

the Chow parameters.

However, the noise sensitivity approach is much more �exible as it allows us to handlecompositionsof

elementary functions such as LTFs. For example, consider the concept classC consisting of functions

of the formh = g(f 1; � � � ; f s) wheref 1; � � � ; f s : f� 1; 1gn ! f� 1; 1g are LTFs. Peres' theorem can

be used to show that NS [h] � O(s
p

 ). HenceCcan be learnt via the LMN algorithm using

m =
nO(s2="2 )

"
log

nO(s2="2 )

�
(5.28)

samples. This is the only known way of showing that a conjunction of two LTFs is learnable to constant

error" in time poly(n) (O'Donnell, 2021).

Our information-theoretic analysis complements this result by showing that this algorithm has expected

generalisation error no more than s
nO(s2="2 ) logm

m
: (5.29)

5.2.5 Functions with constant Fourier degree

As our last example, we study functionsf (x) whose Fourier expansion
P

S� [n]
bf (S)� S(x) has (poly-

nomial) degree at mostk, which is equivalent to requiring thatbf (S) = 0 for jSj > k . For example, it

can be shown that decision trees of depth at mostk satisfy this condition.

Such functions satisfy the property that eachbf (S) is an integer multiple of21� k . Consequently, if for

eachS with jSj � k, we learnbf (S) to within 2� k then we can round our estimate to the nearest multiple

of 21� k and return a hypothesis that haszeroerror. By Hoeffding's inequality (Theorem 35), this can be

done with failure probability no more than� using

m = O
�

22k log
2k
�

�
(5.30)



5.3 SAMPLE COMPLEXITY OF THE LMN ALGORITHM 60

samples. The expected generalisation error is then no more than

O

 r
2k logm

m

!

: (5.31)

To the best of our knowledge, this bound does not appear in the literature, and the ease with which we

were able to obtain it demonstrates the versatility of our result.

5.3 Sample complexity of the LMN algorithm

We end this chapter by proving that the sample complexity of the LMN algorithm isO
�

jF j
" log jF j

�

�
as

stated in Theorem 21. The material in this section is taken from O'Donnell (2021) and we summarize it

here for completeness.

PROOF OFTHEOREM 21. We start the proof similarly to our analysis in Section 4.6, except that

we wantb� S to be within an additive1
2

q
"

jFj of bf S with failure probability no greater than�jF j for each

S 2 F . Again, by Theorem 35, this can be achieved using the number of samples given in Equation 5.8.

Using the same union bound argument as in Section 4.6, this implies that

P

"
\

S2F

� �
�
� b� S � bf S

�
�
� �

1
2

r
"

jFj

� #

� 1 � �: (5.32)

Recall that the LMN algorithm computesg(x) =
P

S2F b� (S)� S(x). By Parseval's theorem (Theo-

rem 18),

kf � gk2
2 =

X

S� [n]

[f � g(S)2 (5.33)

=
X

S2F

�
bf (S) � b� (S)

� 2
+

X

S62F

�
bf (S) � 0

� 2
: (5.34)

By assumption, the Fourier weights off are"=2 concentrated onF , so by de�nition
P

S62F
bf (S)2 �

"=2. Furthermore, by Equation 5.32, with probability at least1 � � we have
�

bf (S) � b� (S)
� 2

� "
4jFj

for all S 2 F hence
P

S2F

�
bf (S) � b� (S)

� 2
� "

4 . Thus,

kf � gk2
2 <

"
4

+
"
2

< " (5.35)

with probability at least1 � � .
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Finally, recall that the LMN algoritihm outputsh(x) := sgn(g(x)) . Now,

P[f (X ) 6= h(X )] = E [1 f f (X ) 6= sgn(g(X ))g] : (5.36)

Note that iff (X ) 6= sgn(g(X )) then eitherf (X ) = 1 andg(X ) < 0, or f (X ) = � 1 andg(X ) � 0. In

either case,jf (X ) � g(X )j � 1 which implies

(f (X ) � g(X ))2 � 1 = 1 f f (X ) 6= sgn(g(X ))g: (5.37)

Otherwise iff (X ) = sgn(g(X )) then clearly

(f (X ) � g(X ))2 � 0 = 1 f f (X ) 6= sgn(g(X ))g: (5.38)

Hence for allX , we have the inequality

1 f f (X ) 6= sgn(g(X ))g � (f (X ) � g(X ))2 (5.39)

and so,

E [1 f f (X ) 6= sgn(g(X ))g] � E
h
(f (X ) � g(X ))2

i
(5.40)

= kf � gk2
2: (5.41)

But we know from Equation 5.35 thatkf � gk2
2 < " with probability at least1 � � , completing the

proof. �



CHAPTER 6

Extension to learning LTFs overRn

In Chapter 4 we have seen that LTFsf : f� 1; 1gn ! f� 1; 1g are characterised by their degree 0

and 1 Fourier coef�cients which we can easily learn to get an approximation off . In this chapter, we

generalise this idea toreal-valuedLTFs instead, i.e., functions of the form

f : Rn ! f� 1; 1g

x 7! sgn(w0 + w1x1 + � � � + wnxn ): (6.1)

It turns out that many of the properties from the discrete case have analogues in this setting, if we

assume that the distribution overX is then-dimensional standard normal density instead of the uniform

distribution overf� 1; 1gn .

In particular, LTFs in this setting are again characterised by their degree 0 and degree 1 Hermite coef�-

cients, the Gaussian analogue of Fourier coef�cients. We again analyse a learning algorithm that learns

LTFs by approximating their Hermite coef�cients then reconstructing the LTF. Our main result in this

chapter is Theorem 25, which states that this algorithm has an expected generalisation error ofO
� p n

m

�
.

We also prove a secondary result, Theorem 29, which shows that reconstructing the LTF from Hermite

estimates is much easier in this setting.

6.1 L2 integrable functions and Hermite analysis

Instead of analysing functions of the formf : f� 1; 1gn ! R as we did in Chapter 4, we will now

analyse functions of the formf : Rn ! R that areL 2 integrable under then-dimensional standard

Gaussian density' n , i.e., the set of functions in the function space

L 2(Rn ; ' n ) :=
�

f : Rn ! R j
Z

Rn
[f (x)]2 ' n (x)dx < 1

�
: (6.2)

62
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Many of the properties in the discrete uniform case continue to hold in this setting, which we summarise

in this section. The results in this section are taken from O'Donnell (2021).

We de�ne an analogous inner product between two functions in this space,

hf; g i := E
X �N (0;1)
 n

[f (X )g(X )] =
Z

Rn
f (x)g(x)' n (x)dx: (6.3)

In the discrete case, we saw that the parity functions� S(x) :=
Q

i 2 S x i , which are just products of linear

polynomialsx i for i 2 [n], formed an orthonormal basis over the set of functionsf : f� 1; 1gn ! R. In

the Gaussian setting, it turns out that products of a certain class of polynomials known as theHermite

polynomialsform an orthonormal basis forL 2(Rn ; ' n ).

DEFINITION 22 (Hermite polynomials).The Hermite polynomials are the univariate polynomials de-

�ned as

hn (x) := ( � 1)n exp
�

1
2

x2
�

dn

dxn

�
exp

�
�

1
2

x2
��

(6.4)

for n 2 N� 0.

Some low order Hermite polynomials are

h0(x) = 1 ; (6.5)

h1(x) = x; (6.6)

h2(x) = x2 � 1; (6.7)

h3(x) = x3 � 3x: (6.8)

It can be shown that products of these polynomials form an orthonormal basis forL 2(Rn ; ' n ).

THEOREM 24. The family of multivariate polynomials

HS(x) :=
nY

i =1

hSi (x i ) (6.9)

for S 2 Nn
� 0 forms an orthonormal basis forL 2(Rn ; ' n ) under the inner product de�ned in Equa-

tion 6.3.

Moreover, as in the Boolean-valued case, any functionf 2 L 2(Rn ; ' n ) can be written uniquely as

f (x) =
X

S2 Nn

bf (S)HS(x) (6.10)
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where

bf (S) := hf; H S i =
Z

Rn
f (x)HS(x)' n (x)dx = E

X �N (0;1)
 n
[f (X )HS(X )] (6.11)

is theHermite coef�cientof f relative toS.

6.2 Hermite analysis of LTFs

We continue to analyse LTFs in this setting, but for simplicity we restrict ourselves to onlyorigin-centred

LTFs, i.e., LTFs of the form

f (x) = sgn(wT x) = sgn(w1x1 + � � � + wnxn ); (6.12)

with constant coef�cientw0 equal to zero. Without loss of generality, we assumekwk2 = 1 . Our ideas

will also work for the non origin-centred case, but the analysis becomes a bit more involved.

The Hermite coef�cient relative to the zero vector is, by de�nition,

H0 = E[f (X )] (6.13)

= E[sgn(wT X )]: (6.14)

BecauseX is n-dimensional standard normal, each componentX i is standard normal and sowT X �

N (0; 1) becausekwk2 = 1 . Hence sgn(wT X ) is 1 with probability1=2 and� 1 with probability1=2

and soH0 = 0 .

The Hermite coef�cient relative to the standard unit vectorsei (the vector having1 in componenti and

0s elsewhere) are

Hei = E[f (X )X i ] (6.15)

= E[sgn(wT X )X i ]: (6.16)

Now wT X andX i are jointly bivariate normal, and have covariance

Cov[wT X; X i ] = E[(wT X )X i ] � E[wT X ]E[X i ] (6.17)

= wi E[X 2
i ] +

X

j 6= i

wj E[X j X i ] � 0 (6.18)

= wi (6.19)
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where the last inequality is becauseX 2
i is chi squared with one degree of freedom, which has mean one,

and becauseX i andX j are independent which impliesE[X i X j ] = E[X i ]E[X j ] = 0 .

Consequently,(wT X; X i ) has the same distribution as
�

U; wi U +
q

1 � w2
i V

�
whereU; V areinde-

pendentstandard normal. Hence,

E[sgn(wT X )X i ] = E
�
sgn(U)

�
wi U +

q
1 � w2

i V
��

(6.20)

= wi E[jUj] +
q

1 � w2
i E[sgn(U)]E[V ] (6.21)

=

r
2
�

wi + 0 : (6.22)

In other words the Hermite coef�cientsHei are just a rescaling of the weightswi by
q

2
� . Hence, just

like Chow's theorem in the discrete case, here the Hermite coef�cientsHei also uniquely determine the

LTF. Moreover it is trivial to reconstruct the LTF givenHei , which is very much different to the discrete

case, and in this sense the Gaussian setting is much easier to deal with compared to the discrete setting.

Given m samples(X (1) ; Y (1) ); � � � ; (X (m) ; Y (m) ) where theX i are i.i.d. n-dimensional standard

Gaussian andYi = f (X (i ) ) = sgn(wT X (i ) ), we can estimate the Hermite coef�cientsHei in the

exact same way that we estimated the Chow coef�cients, namely by computing

b� j :=
mX

i =1

Y (i )X (i )
j (6.23)

for j 2 [n]. We can estimate the weights by rescalingb� by
p �

2 and outputting the hypothesis

h(x) = sgn
� r

�
2

b� T x
�

(6.24)

which is equivalent to just outputting

h(x) = sgn(b� T x): (6.25)

In Section 6.5, we will show that ifb� is estimated to withinL 2 norm" of the vector of Hermite coef�-

cients, thenh de�ned above isO(") close to the true LTFf in the sense that

P[f (X ) 6= h(X )] < O ("): (6.26)
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6.3 MI and CMI bounds

For the time-being however, we aim to use our information-theoretic toolkit to analyse the expected

generalisation error of this learning algorithm. Like in the discrete case, the algorithm is comprised

of two parts. First estimating the Hermite coef�cients, i.e., computingb� (Z ), then constructing the

approximate LTFh from the Hermite estimates, which we will denote byA(b� (Z )) . As before, our

information-theoretic analysis will be focused onb� (Z ); we will then apply the data processing inequality

to get a bound on the entire algorithmA(b� (Z )) .

A �rst idea is to use the mutual information framework in Section 3.2. However, as we discussed there,

the quantityI (Z ; b� (Z )) is in�nite in this case because the feature spaceZ = Rn is continuous and the

algorithmb� deterministic.

So a natural second idea is to compute the conditional mutual information quantityI
�

S; A ( eZS) j eZ
�

instead as we know this is always upper bounded bym ln 2. We can follow the exact same steps as in

the discrete case in Section 4.4, getting that

I
�

S; A ( eZS) j eZ
�

�
nX

j =0

E
ez�D 
 2m

[H (mb� j (ezS))] : (6.27)

As before, we �xez 2 Z 2� m and write

ez =

0

@(ex(0;1) ; ey(0;1)) � � � (ex(0;m) ; ey(0;m) )

(ex(1;1) ; ey(1;1)) � � � (ex(1;m) ; ey(1;m) )

1

A (6.28)

so thatb� j (ezS) can be expressed as

mb� j (ezS) =
nX

i =1

ey(Si ;i ) ex(Si ;i )
j (6.29)

for j 2 [m]. In the discrete caseex(Si ;i )
j 2 f� 1; 1g and soey(Si ;i ) ex(Si ;i )

j 2 f� 1; 1g, hencemb� j (ezS)

was a binomial (plus a constant). However, in the continuous case,ex(Si ;i )
j 2 f� 1; 1g 2 R and so

ey(Si ;i ) ex(Si ;i )
j 2 R. With probability one overS, eachmb� j (ezS) will have a different real value for each

S, and somb� j (ezS) attains the maximum entropy ofm ln 2, making the conditional mutual information

generalisation bound vacuous as well.
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6.4 Individual sample mutual information bound

Thankfully, this is a situation where the individual sample mutual information discussed in Section 3.3

is useful. Althoughb� is a deterministic function ofZ , it is not a deterministic function of any oneZ (i ) ,

since the inclusion of the otherZ (j ) for j 6= i introduce randomness. Our main result for this chapter is

in showing that this approach allows us to prove that the Hermite-based LTF learning algorithm achieves

an expected generalisation bound ofO
� p n

m

�
.

THEOREM 25 (Our result ). The Hermite parameter LTF learnerA described in the previous section

has expected generalisation error
�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� � O

� r
n
m

�
: (6.30)

We now prove this result in the remainder of this section.

Our end goal is to bound the quantityI (X (i ) ; Y (i ) ; b� ). Note that sinceb� j = 1
m

P m
i =1 sgn(wT X (i ) )X (i )

j ,

in vector form we haveb� = 1
m

P m
i =1 sgn(wT X (i ) )X (i ) . Note also that the individual sample mutual

informationI (X (i ) ; Y (i ) ; b� ) is invariant to the choice ofi , hence without loss of generality we will take

i = 1 . Then,

I
�

X (i ) ; Y (i ) ; b�
�

= I
�

X (1) ; Y (1) ; b�
�

(6.31)

= I (X (1) ; b� ) (6.32)

= I (X (1) ; mb� ) (6.33)

= I

 

X (1) ;
mX

k=1

sgn(wT X (k) )X (k)

!

(6.34)

= I

 

X (1) ; sgn(wT X (1) )X (1) +
mX

k=2

sgn(wT X (k) )X (k)

!

: (6.35)

where Equation 6.33 is due to mutual information being invariant to scaling (Lemma 7).

Notice that in Equation 6.35 we want to compute the mutual information between a random variable

X (1) and a deterministic function of that random variable sgn(wT X (1) )X (1) plus independent “noise”
P m

k=2 sgn(wT X (k) )X (k) . Notice that asm increases, the magnitude of the noise increases, and so we

would expect the mutual information to be decreasing inm. This is good news, as this implies the

expected generalisation error bound we get is also decreasing inm (see Theorem 10). The exact rate
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of decrease, however, is nota priori clear, and needs to be workoed out, which we do over the next

subsections.

To progress further, we �rst simplify Equation 6.35 using the following lemma.

LEMMA 13. Let X; Y be continuous independent random variables andf a deterministic function.

Then

I (X ; f (X ) + Y) = h(f (X ) + Y) � h(Y ): (6.36)

PROOF.

I (X ; f (X ) + Y) = h(f (X ) + Y) � h(f (X ) + Y j X ) (6.37)

= h(f (X ) + Y) � E
x� pX

[h(f (X ) + Y j X = x)] (6.38)

= h(f (X ) + Y) � E
x� pX

[h(f (x) + Y j X = x)] (6.39)

= h(f (X ) + Y) � E
x� pX

[h(Y j X = x)] (6.40)

= H (f (X ) + Y) � H (Y ) (6.41)

where Equation 6.37 is due to Lemma 6, and Equation 6.40 due to differential entropy being invariant

to translations (Lemma 9). �

Note the exact same argument also works for Shannon entropy in the case of discrete random variables,

but we will not use this result here.

Applying the above lemma to Equation 6.35 results in the simpli�ed expression

I

 

X (1) ; sgn(wT X (1) )X (1) +
mX

k=2

sgn(wT X (k) )X (k)

!

= h

 
mX

k=1

sgn(wT X (k) )X (k)

!

� h

 
mX

k=2

sgn(wT X (k) )X (k)

!

(6.42)

= h

 
mX

k=1

sgn(wT X (k) )X (k)

!

� h

 
m� 1X

k=1

sgn(wT X (k) )X (k)

!

: (6.43)
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6.4.1 Differential entropy of the sample Hermite means

Let us now analyse the distribution of
P m

k=1 sgn(wT X (k) )X (k) . For the simple case ofm = 1 , this

reduces to sgn(wT X (1) )X (1) . Consider an arbitrary pointx 2 Rn such thatwT x � 0, and letg(x) :=

sgn(wT x)x. Notice that

g(� x) = sgn(wT (� x))( � x) (6.44)

= � sgn(wT x)( � x) (6.45)

= sgn(wT x)x (6.46)

= g(x): (6.47)

In other words any� x with wT (� x) � 0, is mapped to the same point thatx, which haswT x � 0, is

mapped to. Moreover, by rotational symmetry of then-dimensional standard Gaussian density,� x has

the same Gaussian density asx. Hence sgn(wT X (1) )X (1) has support on the set
�

x : wT x � 0
	

and

the density there is twice the normal density, i.e.,

2' n (x)1
�

wT x � 0
	

: (6.48)

Note that the differential entropy of the above p.d.f. is invariant tow by the rotational symmetry of the

Gaussian density. Hence, for the purposes of computing differential entropy we may takew = e1, i.e.,

h(sgn(wT X (1) )X (1) ) = h(sgn(X (1)
1 )X (1) ): (6.49)

The same argument shows that for the case of generalm,

h

 
mX

k=1

sgn(wT X (k) )X (k)

!

= h

 
mX

k=1

sgn(eT
1 X (k) )X (k)

!

(6.50)

= h

 
mX

k=1

sgn(X (k)
1 )X (k)

!

(6.51)

= h

 
mX

k=1

�
�
�X (k)

1

�
�
� ;

mX

k=1

sgn(X (k)
1 )X (k)

2 ; : : : ;
mX

k=1

sgn(X (k)
1 )X (k)

n

!

:

(6.52)

We now show that then random variables inside the differential entropy are mutually independent. We

prove this only for the casem = 1 , because the independence of theX (k) over k imply the case of

generalm.
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Recall that by de�nition,n random variables are independent if their joint c.d.f. factors into the product

of the marginal c.d.f.s. LetE :=
n�

�
�X (1)

1

�
�
� � x1; sgn(X (1)

1 )X (1)
2 � x2; : : : ; sgn(X (1)

1 )X (1)
n � xn

o
. For

x1 � 0 andx2; : : : ; xn 2 R, the joint c.d.f. is

P[E] = P[E; sgn(X (1)
1 ) = 1] + P[E; sgn(X (1)

1 ) = � 1] (6.53)

= P
h
0 � X (1)

1 � x1; X 2 � x2; : : : ; X n � xn

i
(6.54)

+ P [0 � X 1 � � x1; X 2 � � x2; : : : ; X n � � xn ]

= 2P
h
0 � X (1)

1 � x1; X 2 � x2; : : : ; X n � xn

i
(6.55)

= 2
�

�( x1) �
1
2

� nY

k=2

�( xk ): (6.56)

On the other hand,

P[jX 1j � x1] = P[� x1 � X 1 � x1] (6.57)

= �( x1) � �( � x1) (6.58)

= 2�( x1) � 1; (6.59)

and forj > 1,

P[sgn(X 1)X k � xk ] = P[sgn(X 1)X k � xk ; X 1 � 0] (6.60)

+ P[sgn(X 1)X k � xk ; X 1 < 0]

= P[X k � xk ; X 1 � 0] (6.61)

+ P[X k � � xk ; X 1 < 0]

=
1
2

�( xk ) +
1
2

�( xk ) (6.62)

= �( xk ): (6.63)
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Hence the random variablesjX (1)
1 j; sgn(X (1)

1 )X (1)
2 ; : : : ; sgn(X (1)

1 )X (1)
n are mutually independent, and

thus so too are
P m

k=1

�
�
�X (k)

1

�
�
� ;

P m
k=1 sgn(X (k)

1 )X (k)
2 ; : : : ;

P m
k=1 sgn(X (k)

1 )X (k)
n . Consequently their dif-

ferential entropy is

h

 
mX

k=1

�
�
�X (k)

1

�
�
� ;

mX

k=1

sgn(X (k)
1 )X (k)

2 ; : : : ;
mX

k=1

sgn(X (k)
1 )X (k)

n

!

= h

 
mX

k=1

jX (k)
1 j

!

+
nX

j =2

h

 
mX

k=1

sgn(X (k)
1 )X (k)

j

!

: (6.64)

Notice that sgn(X (k)
1 )X (k)

j can be understood as independently and uniformly �ipping the sign ofX (k)
j ;

clearly this does not change the distribution. Hence
P m

k=1 sgn(X (k)
1 )X (k)

j � N (0; m) and so

nX

j =2

h

 
mX

k=1

sgn(X (k)
1 )X (k)

j

!

= ( n � 1) �
1
2

log(2�em ): (6.65)

Tying things together, this shows that

h

 
mX

k=1

sgn(wT X (k) )X (k)

!

= h

 
mX

k=1

jX (k)
1 j

!

+
n � 1

2
log(2�em ): (6.66)

Hence,

h

 
mX

k=1

sgn(wT X (k) )X (k)

!

� h

 
m� 1X

k=1

sgn(wT X (k) )X (k)

!

= h

 
mX

i =1

jX (i )
1 j

!

� h

 
m� 1X

i =1

jX (i )
1 j

!

+
n � 1

2
log

�
1 +

1
m � 1

�
(6.67)

6.4.2 Differential entropy of the sum of half-normals

To continue, we would like to write down an expression forh
� P m

k=1 jX (k)
1 j

�
. For notational simplicity

in this section, we will rewrite this ash (
P m

k=1 jX k j) where eachX k is understood to be i.i.d.N (0; 1).

As a �rst attempt, let us try compute the p.d.f. ofSm :=
P m

k=1 jX k j analytically.

The casem = 2 has been analysed by Mark (2013). The c.d.f. ofS2 := jX 1j + jX 2j is

FS2 (s) = P[jX 1j + jX 2j � s] (6.68)

= P[(X 1; X 2) 2 A2(s)] (6.69)
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whereA2(s) := f (x1; x2) 2 R2 : jx1j + jx2j � sg. The situation is illustrated diagrammatically

in to Figure 6.1a. Note thatA2(s) is a rotated square with a half-width ofsp
2
. BecauseX (1) ; X (2)

x1

x2

s

s

−s

−s A2(s)

(A) A2(s) := f (x1; x2) 2 R2 : jx1j + jx2j �
sg.

x1

x2

s
s√
2

s√
2

A′
2(s)

(B) A0
2(s) =

h
� sp

2
; sp

2

i 2
.

FIGURE 6.1. Illustration of the regionA2(s) and its rotationA0
2(s).

are independent standard Gaussian, their joint density has circular symmetry, and so we can rotate the

squareA2(s) so that it is parallel to the axes. In other words,

P [(X 1; X 2) 2 A2(s)] = P
�
(X 1; X 2) 2 A0

2(s)
�

(6.70)

whereA0
2(s) :=

h
� sp

2
; sp

2

i 2
is an axis-parallel square with the same half-width. See Figure 6.1b.

By exploiting the independence ofX 1 andX 2, we have

P
�
(X 1; X 2) 2 A0

2(s)
�

= P

"

(X 1; X 2) 2
�
�

s
p

2
;

s
p

2

� 2
#

(6.71)

= P
�
X 1 2

�
�

s
p

2
;

s
p

2

�� 2

(6.72)

=
�
�

�
s

p
2

�
� �

�
�

s
p

2

�� 2

(6.73)

=
�
2�

�
s

p
2

�
� 1

� 2

: (6.74)
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Hence the density ofS2 := jX 1j + jX 2j is the derivative of the above expression,

f S2 (s) =
d
ds

�
2�

�
s

p
2

�
� 1

� 2

(6.75)

= 2
p

2
�
2�

�
s

p
2

�
� 1

�
'

�
s

p
2

�
: (6.76)

Let us try to generalise this argument form > 2. Form = 3 , we have

FS3 (s) = P[(X 1; X 2; X 3) 2 A3(s)] (6.77)

whereA3(s) := f (x1; x2; x3) 2 R3 : jx1j + jx2j + jx3j � sg. The solidA3(s) is an octahedron and

visualised in Figure 6.2. Unfortunately, the same trick of rotatingA3(s) does not generalise. However,

FIGURE 6.2. Illustration of the solidA3(s) := f (x1; x2; x3) 2 R3 : jx1j+ jx2j+ jx3j �
sg for s = 1 .

notice that for any horizontal “slice” ofA3(s) at a �xed heightX 3 = x3, we can compute its differential

probability asFS2 (s � j x3j)' (x3) dx3. Then, by using the symmetry of the Gaussian density, we have

FS3 (s) = 2
Z s

0
FS2 (s � x3)' (x3) dx3: (6.78)

This argument generalises to arbitrarym in thatFSm satis�es the recurrence

FSm (s) = 2
Z s

0
FSm � 1 (s � x)' (x) dx: (6.79)

with initial conditionFS2 (s) =
h
2�

�
sp
2

�
� 1

i 2
.
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Unfortunately, it does not seem very tractable to compute the derivative of this expression for generalm

to get the density, and then use this to compute the differential entropy. However, at the end of the day,

we would like to analyse theasymptoticbehaviour of a learning algorithm, and so perhaps we can settle

for asymptotic expressions ofh(Sm ) instead.

Like we did in the discrete case, because we are considering the asymptotics of a sum of i.i.d. random

variables, it is natural to turn to the central limit theorem (Theorem 31). It can be easily shown that a

half-normal has mean
q

2
� and variance1� 2

� . Let Zk := jX k j �
q

2
� and consider the normalized sum

Sm :=
Z1 + � � � + Zmp

m
(6.80)

which has mean 0 and variance1 � 2
� . Then by the central limit theorem,

Sm
d�! N

�
0; 1 �

2
�

�
(6.81)

hence we might expect thath(Sm ) ! h(N (0; 1)). In fact, this result is indeed true, and was proven in

the celebrated work of Barron (1986).

THEOREM 26 (Entropic central limit theorem (Barron, 1986)).Let Z1; � � � ; Zm be i.i.d. continuous

random variables with mean 0 and variance� 2, and de�ne the normalized sum

Sm :=
Z1 + � � � + Zmp

m
: (6.82)

Then the KL divergence betweenSm andN (0; � 2) converges to zero, i.e.,

lim
m!1

D(Sm k N (0; � 2)) = 0 (6.83)

if and only ifD (Sm k N (0; � 2)) < 1 for somem.



6.4 INDIVIDUAL SAMPLE MUTUAL INFORMATION BOUND 75

This then impliesh(Sm ) ! h(N (0; � 2)) = 1
2 ln 2�e� 2 because, lettingf m denote the density ofSm ,

we have

D(Sm k N (0; � 2)) =
Z

R
f m (x) ln

 
f m (x)

1
�

p
2�

exp(� 1
2� 2 x2)

!

dx (6.84)

=
Z

R
f m (x) ln f m (x)dx +

Z

R
f m (x) ln

�
�

p
2�

�
dx

+
Z

R
f m (x)

1
2� 2 x2dx (6.85)

= � h(f m ) +
1
2

ln
�
2�� 2�

+
1

2� 2 � 2 (6.86)

= � h(f m ) +
1
2

ln
�
2�e� 2�

(6.87)

= � h(Sm ) + h(N (0; � 2)) (6.88)

where Equation 6.86 follows becausef m is a density sof m integrates to one, and becauseSm has mean

zero so its second moment equals its variance� 2.

As an aside, note that the resultD (Sm k N (0; � 2)) = � h(Sm )+ h(N (0; � 2)) only relied onSm having

mean zero and variance� 2, and was independent of anything else aboutSm . Hence the result is true

for anycontinuous random variable with mean zero and variance� 2. Moreover, non-negativity of KL

divergence implies that

h(Sm ) � h(N (0; � 2)) (6.89)

with equality if and only ifSm � N (0; � 2). In other words, we have shown the following result.

THEOREM 27. The normal density uniquely maximises differential entropy over all densities with a

given variance. In other words, ifX is a continuous random variable with mean zero (without loss of

generality) and variance� 2, then

h(X ) �
1
2

ln(2�e� 2) (6.90)

with equality if and only ifX � N (0; � 2).

Going back to the entropic central limit theorem, we note that the proof of the result is highly nontrivial

and is in fact a stronger statement than the standard central limit theorem. The proof relies on a con-

nection between entropy andFisher information(Barron, 1986), unlike the proof of the standard central

limit theorem which is based on characteristic functions.
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Finally, for our original problem we have

h
�

jX 1j + � � � + jX m j
p

m

�
= h

0

@
jX 1j + � � � + jX m j � m

q
2
�

p
m

1

A (6.91)

since differential entropy is invariant to translations (Lemma 9). Taking limits on both sides and applying

the entropic central limit theorem yields

lim
m!1

h
�

jX 1j + � � � + jX m j
p

m

�
=

1
2

ln
�

2�e
�

1 �
2
�

��
: (6.92)

By a standard result in analysis, this implies

lim
m!1

�
h

�
jX 1j + � � � + jX m j

p
m

�
� h

�
jX 1j + � � � + jX m� 1j

p
m � 1

��
= 0 : (6.93)

We have

h
�

jX 1j + � � � + jX m j
p

m

�
� h

�
jX 1j + � � � + jX m� 1j

p
m � 1

�
(6.94)

= h

 
mX

k=1

jX k j

!

�
1
2

ln m � h

 
m� 1X

k=1

jX k j

!

+
1
2

ln(m � 1) (6.95)

= h

 
mX

k=1

jX k j

!

� h

 
m� 1X

k=1

jX k j

!

+
1
2

ln
�

1 +
1

m � 1

�
; (6.96)

hence,

lim
m!1

"

h

 
mX

k=1

jX k j

!

� h

 
m� 1X

k=1

jX k j

!

+
1
2

ln
�

1 +
1

m � 1

� #

= 0 : (6.97)

Unfortunately this does not tell us what the asymptotic behaviour ofh (
P m

k=1 jX k j) � h
� P m� 1

k=1 jX k j
�

is

except that it iso(1). For example it does not immediately follow thath (
P m

k=1 jX k j)� h
� P m� 1

k=1 jX k j
�

=

O
�

� 1
2 ln

�
1 + 1

m� 1

��
.

The problem is that the entropic central limit theorem does not tells ushow quicklythe convergence in

entropy is, only that it does converge. Some further reading into the literature leads to a more recent

result by Bobkov et al. (2013) who derive an asymptotic expansion of the quantityD(Sm k N (0; � 2)) .

As a special case of this expansion, they derive the following result.

THEOREM 28 (Bobkov et al. (2013)).SupposeEZ 4
1 < 1 . Then

D(Sm k N (0; � 2)) =
1

12m

�
EZ 3

1

� 2
+ o

�
1

m logm

�
: (6.98)
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Combining this result with Equation 6.88, we get that

h(Sm ) � h(Sm� 1) = h(N (0; � 2)) � D (Sm k N (0; � 2)) � h(N (0; � 2)) + D(Sm� 1 k N (0; � 2))

(6.99)

= D(Sm� 1 k N (0; � 2)) � D (Sm k N (0; � 2)) (6.100)

=
1
12

�
EZ 3

1

� 2
�

1
m � 1

�
1
m

�
+ o

�
1

m logm

�
(6.101)

=
1
12

�
EZ 3

1

� 2
�

1
m(m � 1)

�
+ o

�
1

m logm

�
: (6.102)

For our case whereZ i := jX i j �
q

2
� it can be shown that

�
EZ 3

1

� 2
=

2(� � 4)2

(� � 2)3 � 0:9910: (6.103)

By Equation 6.96,

h

 
mX

k=1

jX k j

!

� h

 
m� 1X

k=1

jX k j

!

= h(Sm ) � h(Sm� 1) �
1
2

ln
�

1 +
1

m � 1

�
(6.104)

= O
�

1
m2

�
+ o

�
1

m logm

�
(6.105)

= o
�

1
m logm

�
: (6.106)

Finally, backtracking through all our calculations (Equation 6.67, Equation 6.43 and Equation 6.35), we

can conclude that the individual sample mutual information satis�es

I
�

Z (i ) ; b� (Z )
�

= o
�

1
m logm

�
+

n � 1
2

log
�

1 +
1

m � 1

�
(6.107)

� o
�

1
m logm

�
+

n � 1
2

log
�

exp
�

1
m � 1

��
(6.108)

� o
�

1
m logm

�
+ O

� n
m

�
(6.109)

= O
� n

m

�
: (6.110)

By the data processing inequality, the individual sample mutual information for the full learning algo-

rithm then satis�es

I
�

Z (i ) ; A (b� (Z ))
�

� O
� n

m

�
; (6.111)

and so, combining this with Theorem 10 gives the intended result of Theorem 25.
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6.5 From Hermite estimates to an LTF

In Section 6.2, we stated that the Hermite estimatesb� could easily be used to construct a good approxi-

mation of the true LTFf by simply outputting an LTF withb� as its weights. In this section, we formalise

and prove this result.

THEOREM 29 (Our result ). Suppose thatb� 2 Rn is such that

kb� � H (e)k2 < " (6.112)

whereH (e) := ( H (e1); � � � ; H (en )) are the degree 1 Hermite coef�cients of an origin-centred LTFf .

Then the hypothesis

h(x) := sgn(b� T x) (6.113)

satis�es

P
X � ' n

[f (X ) 6= h(X )] < O ("): (6.114)

This result is likely known to researchers in the �eld (Servedio, 2023) but did not seem to be present in

the literature; for the sake of copmleteness, we derive this result and provide a proof below.

PROOF. SinceHe =
q

2
� w, it will be helpful to de�ne the weight estimates

bw :=

r
�
2

b�; (6.115)

and thenormalisedweight estimates

ew :=
bw

k bwk2
: (6.116)

Then,

P [f (X ) 6= h(X )] = P
�
sgn(wT X ) 6= sgn(b� T X )

�
(6.117)

= P
�
sgn(wT X ) 6= sgn( ewT X )

�
(6.118)

= P[wT X > 0; ewT X < 0] + P[wT X < 0; ewT X > 0] (6.119)

= 2P[wT X > 0; ewT X < 0]: (6.120)
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Now, becausew and ew have norm one,wT X and ewT X are bothN (0; 1) random variables. They are

jointly distributed with covariance

Cov[wT X; ewT X ] = E[(wT X )( ewT X )] � E[wT X ]E[ ewT X ] (6.121)

= E

" 
nX

i =1

wi X i

!  
nX

i =1

ewi X i

!#

� 0 (6.122)

=
nX

i =1

wi ewi E[X 2
i ] +

X

i 6= j

wi ewj E[X i X j ] (6.123)

=
nX

i =1

wi fwi + 0 (6.124)

= wT ew: (6.125)

Hence(wT X; ewT X ) has the same distribution as(Y; wT ewY +
p

1 � (wT ew)2Z ) whereY andZ are

independentN (0; 1). Thus,

2P
�
wT X > 0; ewT X < 0

�
= 2P

�
Y > 0; wT ewY +

q
1 � (wT ew)2Z < 0

�
(6.126)

= 2P[Y > 0]P
�
wT ewY +

q
1 � (wT ew)2Z < 0 j Y > 0

�
(6.127)

= P
�
wT ewjY j +

q
1 � (wT ew2)Z < 0

�
(6.128)

= P [Z < � � jY j] (6.129)

where� := wT ewp
1� (wT ew)2

. This probability can be calculated by integrating the product of the marginal

densities ofjY j andZ over the regionA := f (y; z) 2 [0; 1 ) � R j z < � �y g. Refer to Figure 6.3 for

a diagram of this region.

Speci�cally,

P [Z < � � jY j] =
ZZ

A

1
p

2�
�

2
p

2�
exp

�
�

1
2

(y2 + z2)
�

dy dz (6.130)

=
ZZ

A

1
�

exp
�

�
1
2

(y2 + z2)
�

dy dz: (6.131)

To evaluate this integral, make a change of variable to polar coordinates(y; z) = ( r cos�; r sin � ).

Recall the Jacobian matrix of this transformation has determinantr . Hence by the multivariate change
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y

z

tan−1(α)

A

FIGURE 6.3. Illustration of the regionA := f (y; z) 2 [0; 1 ) � R j z < � �y g.

of variables theorem (Theorem 37),

ZZ

A

1
�

exp
�

�
1
2

(y2 + z2)
�

dy dz =
Z 1

0

Z � tan � 1 (� )

� �
2

1
�

exp
�

�
1
2

(r 2 cos2 � + r 2 sin2 � )
�

r d� dr

(6.132)

=
1
�

Z 1

0

Z � tan � 1 (� )

� �
2

r exp
�

�
1
2

r 2
�

d� dr (6.133)

=
1
�

Z 1

0

� �
2

� tan� 1(� )
�

r exp
�

�
1
2

r 2
�

dr (6.134)

=
�

1
2

�
tan� 1(� )

�

� �
� exp

�
�

1
2

r 2
�� r = 1

r =0
(6.135)

=
1
2

�
tan� 1(� )

�
(6.136)

which is monotonically decreasing as a function of� and approaches zero as� ! 1 . Hence to upper

bound this quantity, we seek to lower bound� which amounts to lower bounding the quantitywT ew. To



6.5 FROM HERMITE ESTIMATES TO ANLTF 81

do so, note that

kw � ewk2
2 =

nX

i =1

(wi � fwi )2 (6.137)

=
nX

i =1

w2
i � 2

nX

i =1

wi ewi +
nX

i =1

ew2
i (6.138)

= kwk2
2 � 2wT ew + k ewk2

2 (6.139)

= 2 � 2wT ew: (6.140)

On the other hand, by the triangle inequality,

kw � ewk2 � k w � bwk2 + k bw � ewk2: (6.141)

For the second summand on the right hand side, we have

k bw � ewk2 = kk bwk2 � ew � ewk2 (6.142)

= jk bwk2 � 1j � k ewk2 (6.143)

= jk bwk2 � k wk2j (6.144)

� k bw � wk2; (6.145)

where the second last line is because we assumedw has norm one, and the last line is due to the reverse

triangle inequality. Hence,

kw � ewk2 � 2k bw � wk2: (6.146)

But we assumed that our Hermite estimatesb� are withinL 2 norm " of the true Hermite coef�cients.

Multiplying both sides of Equation 6.112 by
p �

2 gives

k bw � wk <

r
�
2

" (6.147)

and so

kw � ewk2 <
p

2�": (6.148)

Squaring both sides yields

kw � ewk2 < 2�" 2; (6.149)

and combining this with Equation 6.140 gives

2 � 2wT ew < 2�" 2; (6.150)
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or equivalently,

wT ew > 1 � �" 2: (6.151)

Hence we have

� :=
wT ew

p
1 � (wT ew)2

(6.152)

>
1 � �" 2

p
1 � (1 � �" 2)2

(6.153)

=
1 � �" 2

p
2�" 2 � � 2"4

(6.154)

=: g1(" ): (6.155)

We would like to determine the asymptotic behvaiour ofg1(" ). We have

"g1(" ) =
1 � �" 2

p
2� � � 2"2

: (6.156)

If for instance," � 1
2 , then

"g1(" ) �
1 � �= 4

2� � � 2=4
� 0:11 (6.157)

and so we must have

g1(" ) = 
(1 ="): (6.158)

We also have

P[f (X ) 6= h(X )] =
1
2

�
tan� 1(� )

�
=: g2(� ): (6.159)

To determine the asymptotic behaviour ofg2(� ), we have, by L'Hôpital's rule (Theorem 36),

lim
� !1

�g 2(� ) = lim
� !1

1
2 � 1

� tan� 1(� )
1
�

(6.160)

= lim
� !1

� 1
� (1+ � 2 )

� 1
� 2

(6.161)

= lim
� !1

� 2

� (1 + � 2)
(6.162)

=
1
�

: (6.163)

But since� > 
(1 =") this impliesg2(� ) < O ("), i.e.,

P [f (X ) 6= h(X )] < O ("): (6.164)

�



CHAPTER 7

Conclusion and further work

In this thesis we have looked at a variety of ideas that can be used to provably bound the generalisation

error of a machine learning algorithm. In Chapter 2, we introduced the formal setting of statistical

learning, and de�ned what it means to be a good learning algorithm — this is the de�nition of PAC

learning, which loosely says that, given enough samplesm, a good learner should be able to learn a

target functionf to arbitrary accuracy" with arbitrarily high probability1 � � . We also saw how a

combinatorial quantity of the hypothesis space, its VC dimension, characterises the PAC learnability of

H , and provides tight sample complexity bounds for any ERM algorithm. However, this does not give

us any guarantees on anygenerallearning algorithmA.

In Chapter 3, we saw that the mutual informationI (Z ; A (Z )) between the input samplesZ and the

output hypothesis of a learning algorithmA, and some variations of this idea, could be used to de-

rive bounds on the expected generalisation error ofany learning algorithmA, that is the quantity�
�
�
� E
Z;A

h
R(A(Z )) � bRZ (A (Z ))

i �
�
�
� .

In Chapter 4 we applied these information-theoretic tools in analysing a relatively simple algorithm that

learnt linear threshold functions overf� 1; 1gn given samples drawn uniformly fromf� 1; 1gn . We saw

that LTFs were characterised by their degree 0 and degree 1 Fourier coef�cients, collectively known

as the Chow parameters. Based off this idea, our learning algorithm learns the Chow parameters to

suf�cient accuracy, then uses a result by O'Donnell and Servedio (2008) to approximately reconstruct

the LTF from the estimated Chow parameters. Learning the LTF to accuracy parameter" unfortu-

nately required an exponential number of samples in1=" and had time complexity doubly exponential

in 1=" — the dif�culty lies in reconstructing the LTF from the Chow estimates. Despite this, using the

mutual information framework introduced in Section 3.2, we derived a novel result in Section 4.3 that

this learning algorithm had expected generalisation errorO
� q

n log m
m

�
. Using the conditional mutual
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introduced in Section 3.4, we were able to derive a slightly more �ne-grained bound in Section 4.4 that

depended on the particular behaviour off .

In Chapter 5 we saw that our information-theoretic analysis could be applied to a very similar algorithm

by Linial et al. (1993) and we derived a novel result that their algorithm has expected generalisation

errorO
� q

jF j log m
m

�
whereF is an" concentration for the Fourier weights off .

Finally, in Chapter 6, we generalised the setup to consider learning LTFs overRn , with samples now

drawn from then dimensional standard Gaussian density. We saw that many of the properties form

the discrete case carried over. Importantly, we saw that the Hermite coef�cients, the equivalent of the

Fourier coef�cients in this setting, continue to characterise LTFs, and that we can estimate the Her-

mite coef�cients in the exact same way. Furthermore, in the continuous setting, we saw that is trivial

to reconstruct an approximate LTF given approximate Hermite estimates, which is very much untrue

for the discrete case. Speci�cally, we show that if the Hermite estimates are withinL 2 norm " of the

true Hermite coef�cients, then the corresponding LTF isO(") far from the true LTF. Turning to our

information-theoretic framework, we show that the mutual information and conditional mutual infor-

mation framework fail to provide nontrivial generalisation bounds — this is due to having a continuous

feature spaceRn and a deterministic learning algorithm. Thankfully, using the individual sample mutual

information approach described in Section 3.3, we were able to derive a novel result that the learning

algorithm has an expected generalisation error ofO
� p n

m

�
, using a different and more involved analysis

compared to the discrete case.

There are a number of directions that can be pursued further with this line of work. LTFs are one of

the most fundamental building blocks in learning theory and thus often used in more advanced learning

algorithms, so it would be interesting to see how our theory carries over to those cases. For example,

Diakonikolas et al. (2020) study the problem of PAC learning neural networks with one hidden layer

and ReLU activation under the Gaussian distribution, which basically boils down to learning multiple

dependent LTFs at once. Their algorithm exploits the idea of estimating the degree 2 Hermite coef�cients

instead of the degree 1 coef�cients which was the subject of our analysis in Chapter 6.

Another direction of work is to investigate if our analysis can be tweaked to obtain bounds on more gen-

eralised information measures that producehigh probabilitygeneralisation guarantees such as Sibson's

� mutual informationI � (Z ; A (Z )) (Esposito et al., 2020a), as discussed in Section 3.2. Unfortunately,
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as we discuss there, not all the properties that regular mutual information satis�es carry over, hence

some new ideas are required.

A different idea is to consider if our setup can be generalised to beyond the two settings of the uniform

Boolean hypercube and Gaussian density that we analysed in this thesis. Furthermore, the expected

generalisation error we derived in both settings was, ignoring logarithmic factors,eO
� p n

m

�
, however

the analysis we used to attain this bound was very different between the two cases. It would be interesting

to see if there is a more uni�ed approach that lets us attain this bound.

Finally, some empirical analysis could be performed to check if our bound is tight in practice, by im-

plementing the described learning algorithms, running them, and collecting statistics about the general-

isation error empirically. This would be dif�cult to perform in the discrete case because the process of

reconstructing the LTF from the Chow estimates described by O'Donnell and Servedio (2008) is highly

nontrivial, however the continuous setting is quite straightforward to implement.
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APPENDIX A

Mathematical results

A.1 Probability theory

We review some basic results in probability theory.

DEFINITION 23 (Convergence in probability).A sequence of random variablesX 1; X 2; � � � converges

in probability toc 2 R, writtenX n
P�! c, if

lim
n!1

P [jX n � cj � " ] = 0 : (A.1)

DEFINITION 24 (Convergence in distribution).A sequence of random variablesX 1; X 2; � � � converges

in distribution to a random variableX , writtenX n
d�! X , if

lim
n!1

FX n (x) = FX (x) (A.2)

for all x at whichFX (x) is continuous, whereFX n andFX denote the c.d.f. ofX n andX respectively.

THEOREM 30 (Weak law of large numbers).Let X 1; X 2; � � � be i.i.d. random variables with mean

E[X 1] = � . Then,
1
n

nX

i =1

X n
P�! �: (A.3)

THEOREM 31 (Lindeberg-Lévy central limit theorem).Let X 1; X 2; � � � be i.i.d. random variables with

meanE[X 1] = � and varianceVar[X 1] = � 2 < 1 . Then,

p
n

  
1
n

nX

i =1

X i

!

� �

!
d�! N (0; � 2): (A.4)

THEOREM 32 (Jensen's inequality).Let ' be a convex function, andX a random variable. Then

E [' (X )] � ' (EX ): (A.5)
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THEOREM 33 (Markov's inequality).LetX � 0 be a nonnegative random variable. Then

P[X � c] �
E[X ]

c
(A.6)

for anyc > 0.

THEOREM 34 (Hoeffding's inequality).Let X 1; � � � ; X m be independent random variables such that

X i 2 [ai ; bi ] for i 2 [m], and letSm :=
P m

i =1 X i . Then

P (jSm � ESm j � c) � 2 exp
�

�
2c2

P m
i =1 (bi � ai )2

�
:

Hoeffding's inequality can be used to prove the following result that states the required sample com-

plexity required for the sample mean to be close to the true mean.

THEOREM 35. Givenm i.i.d. samplesX 1; � � � ; X m of a bounded random variable taking values in

[a; b], the sample mean1m
P m

i =1 X i is within an additive� " of the true meanEX 1 with probability at

least1 � � when using at least

m =
(b� a)2

2"2 log
�

2
�

�
= ( b� a)2O

�
1
"2 log

1
�

�
(A.7)

samples.

A.2 Calculus

We review some basic results in calculus.

THEOREM 36 (L'Hôpital's rule). Supposef; g are differentiable withlim x! a f (x) = lim x! a g(x) = 0

or lim x! a f (x) = lim x! a g(x) = 1 for some real (possibly in�nite) numbera. Then,

lim
x! a

f (x)
g(x)

= lim
x! a

f 0(x)
g0(x)

: (A.8)

THEOREM 37 (Multivariate change of variables theorem).Let ' : (x; y) ! (u; v) be a differentiable

invertible map between two open subsets ofR2. Then,
ZZ

A
f (x; y) dx dy =

ZZ

' (A )
f (' � 1(u; v))

�
�
�
�
d(x; y)
d(u; v)

�
�
�
� du dv; (A.9)

where,

d(x; y)
d(u; v)

:=

0

@
@x
@u

@x
@v

@y
@u

@y
@v

1

A (A.10)
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